Skip to main content

MPV17-Associated Hepatocerebral Mitochondrial DNA Depletion Syndrome

  • Chapter
  • First Online:

Abstract

Mitochondrial DNA (mtDNA) depletion syndromes are autosomal-recessive diseases characterized by a severe decrease in mtDNA content leading to organ dysfunction due to insufficient amount of respiratory chain components. They are phenotypically heterogeneous and classified as myopathic, encephalomyopathic, or hepatocerebral. The latter group has been associated with mutations in TWINKLE, POLG1, DGUOK genes, and recently with mutations in the MPV17 gene. MPV17 encodes a mitochondrial inner membrane protein and plays as yet a poorly understood role in the maintenance of mtDNA integrity. MPV17-associated hepatocerebral mtDNA depletion syndrome presents in infancy with liver dysfunction that progress to liver failure in most of the affected individuals. Cholestasis, hepatomegaly, liver cirrhosis, and hepatocellular carcinoma can develop. The vast majority of the affected individuals exhibit neurological manifestations, including developmental delay, hypotonia, muscle weakness, motor and sensory peripheral neuropathy, and leukodystrophy. Other common manifestations include failure-to-thrive, lactic acidosis, and hypoglycemia. The diagnosis is based on clinical presentation, demonstration of liver mtDNA depletion, and identification of MPV17 mutations. The prognosis is unfavorable with half of affected individuals died in infancy. Liver transplant remains the only option with half of the transplanted individuals not surviving posttransplantation. Till date, 20 different mutations have been reported in MPV17 gene with clustering of mutations in the region of the putative protein kinase C phosphorylation site. About half of those mutations are missense. The p.R50Q mutation, which occurs in a CpG dinucleotide, is the most common MPV17 mutation and, till date, has only been found in the homozygous state. In contrast to most MPV17 gene mutations that are associated with death in infancy or early childhood, the p.R50Q mutation is associated with longer survival and better posttransplant outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  2. Spinazzola A, Invernizzi F, Carrara F, Lamantea E, Donati A, Dirocco M, Giordano I, Meznaric-Petrusa M, Baruffini E, Ferrero I, Zeviani M (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32:143–158

    Article  PubMed  CAS  Google Scholar 

  3. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29:342–344

    Article  PubMed  CAS  Google Scholar 

  4. Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chrétien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rötig A (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39:776–780

    Article  PubMed  CAS  Google Scholar 

  5. Bornstein B, Area E, Flanigan KM, Ganesh J, Jayakar P, Swoboda KJ, Coku J, Naini A, Shanske S, Tanji K, Hirano M, DiMauro S (2008) Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscul Disord 18:453–459

    Article  PubMed  Google Scholar 

  6. Elpeleg O, Miller C, Hershkovitz E, Bitner-Glindzicz M, Bondi-Rubinstein G, Rahman S, Pagnamenta A, Eshhar S, Saada A (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76:1081–1086

    Article  PubMed  CAS  Google Scholar 

  7. Ostergaard E, Christensen E, Kristensen E, Mogensen B, Duno M, Shoubridge EA, Wibrand F (2007) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81:383–387

    Article  PubMed  CAS  Google Scholar 

  8. Hakonen AH, Isohanni P, Paetau A, Herva R, Suomalainen A, Lönnqvist T (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130:3032–3040

    Article  PubMed  Google Scholar 

  9. Ferrari G, Lamantea E, Donati A, Filosto M, Briem E, Carrara F, Parini R, Simonati A, Santer R, Zeviani M (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 128:723–731

    Article  PubMed  Google Scholar 

  10. Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A, Anbinder Y, Berkowitz D, Hartman C, Barak M, Eriksson S, Cohen N (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29:337–341

    Article  PubMed  CAS  Google Scholar 

  11. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, Marsano RM, Donnini C, Weiher H, Strisciuglio P, Parini R, Sarzi E, Chan A, DiMauro S, Rötig A, Gasparini P, Ferrero I, Mootha VK, Tiranti V, Zeviani M (2006) MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 38:570–555

    Article  PubMed  CAS  Google Scholar 

  12. Parini R, Furlan F, Notarangelo L, Spinazzola A, Uziel G, Strisciuglio P, Concolino D, Corbetta C, Nebbia G, Menni F, Rossi G, Maggioni M, Zeviani M (2009) Glucose metabolism and diet-based prevention of liver dysfunction in MPV17 mutant patients. J Hepatol 50:215–221

    Article  PubMed  CAS  Google Scholar 

  13. Karadimas CL, Vu TH, Holve SA, Chronopoulou P, Quinzii C, Johnsen SD, Kurth J, Eggers E, Palenzuela L, Tanji K, Bonilla E, De Vivo DC, DiMauro S, Hirano M (2006) Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet 79:544–548

    Article  PubMed  CAS  Google Scholar 

  14. Spinazzola A, Santer R, Akman OH, Tsiakas K, Schaefer H, Ding X, Karadimas CL, Shanske S, Ganesh J, Di Mauro S, Zeviani M (2008) Hepatocerebral form of mitochondrial DNA depletion syndrome: novel MPV17 mutations. Arch Neurol 65:1108–1113

    Article  PubMed  Google Scholar 

  15. Navarro-Sastre A, Martín-Hernández E, Campos Y, Quintana E, Medina E, de Las Heras RS, Lluch M, Muñoz A, del Hoyo P, Martín R, Gort L, Briones P, Ribes A (2008) Lethal hepatopathy and leukodystrophy caused by a novel mutation in MPV17 gene: description of an alternative MPV17 spliced form. Mol Genet Metab 94:234–239

    Article  PubMed  CAS  Google Scholar 

  16. Kaji S, Murayama K, Nagata I, Nagasaka H, Takayanagi M, Ohtake A, Iwasa H, Nishiyama M, Okazaki Y, Harashima H, Eitoku T, Yamamoto M, Matsushita H, Kitamoto K, Sakata S, Katayama T, Sugimoto S, Fujimoto Y, Murakami J, Kanzaki S, Shiraki K (2009) Fluctuating liver functions in siblings with MPV17 mutations and possible improvement associated with dietary and pharmaceutical treatments targeting respiratory chain complex II. Mol Genet Metab 97:292–296

    Article  PubMed  CAS  Google Scholar 

  17. Wong LJ, Brunetti-Pierri N, Zhang Q, Yazigi N, Bove KE, Dahms BB, Puchowicz MA, Gonzalez-Gomez I, Schmitt ES, Truong CK, Hoppel CL, Chou PC, Wang J, Baldwin EE, Adams D, Leslie N, Boles RG, Kerr DS, Craigen WJ (2007) Mutations in the MPV17 gene are responsible for rapidly progressive liver failure in infancy. Hepatology 46:1218–1227

    Article  PubMed  CAS  Google Scholar 

  18. El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, Wong LJ (2010) MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab 99:300–308

    Article  PubMed  CAS  Google Scholar 

  19. Merkle AN, Nascene DR, McKinney AM (2012) MR imaging findings in the reticular formation in siblings with MPV17-related mitochondrial depletion syndrome. AJNR Am J Neuroradiol 33(3):E34–5

    Article  PubMed  CAS  Google Scholar 

  20. Dimmock D, Tang LY, Schmitt ES, Wong LJ (2010) Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 56:1119–1127

    Article  PubMed  CAS  Google Scholar 

  21. Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912

    Article  PubMed  Google Scholar 

  22. Cormier-Daire V, Chretien D, Rustin P, Rötig A, Dubuisson C, Jacquemin E, Hadchouel M, Bernard O, Munnich A (1997) Neonatal and delayed-onset liver involvement in disorders of oxidative phosphorylation. J Pediatr 130:817–822

    Article  PubMed  CAS  Google Scholar 

  23. Lee WS, Sokol RJ (2007) Mitochondrial hepatopathies: advances in genetics and pathogenesis. Hepatology 45:1555–1565

    Article  PubMed  CAS  Google Scholar 

  24. Trott A, Morano KA (2004) SYM1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryot Cell 3:620–631

    Article  PubMed  CAS  Google Scholar 

  25. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, Donnini C (2010) Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet 19:1098–1107

    Article  PubMed  CAS  Google Scholar 

  26. Weiher H, Noda T, Gray DA, Sharpe AH, Jaenisch R (1990) Transgenic mouse model of kidney disease: insertional inactivation of ubiquitously expressed gene leads to nephrotic syndrome. Cell 62:425–434

    Article  PubMed  CAS  Google Scholar 

  27. Meyer zum Gottesberge AM, Reuter A, Weiher H (1996) Inner ear defect similar to Alport’s syndrome in the glomerulosclerosis mouse model Mpv17. Eur Arch Otorhinolaryngol 253:470–474

    Google Scholar 

  28. Meyer zum Gottesberge AM, Felix H (2005) Abnormal basement membrane in the inner ear and the kidney of the Mpv17-/- mouse strain: ultrastructural and immunohistochemical investigations. Histochem Cell Biol 124:507–516

    Article  Google Scholar 

  29. Viscomi C, Spinazzola A, Maggioni M, Fernandez-Vizarra E, Massa V, Pagano C, Vettor R, Mora M, Zeviani M (2009) Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Hum Mol Genet 18:12–26

    Article  PubMed  CAS  Google Scholar 

  30. Krawczak M, Ball EV, Cooper DN (1998) Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 63:474–488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman W. El-Hattab M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

El-Hattab, A.W. (2013). MPV17-Associated Hepatocerebral Mitochondrial DNA Depletion Syndrome. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_6

Download citation

Publish with us

Policies and ethics