Skip to main content

Renal Hemodynamic Changes in Heart Failure

  • Chapter
  • First Online:
  • 1212 Accesses

Abstract

Heart failure is manifested by a diminished cardiac output and subsequent reduction in peripheral perfusion affecting all organs and biochemically manifested by changes in kidney function. This diminution in perfusion triggers numerous neurohumoral compensatory mechanisms in an attempt to maintain circulatory volume. These counteractive mechanisms involve activation of baroreceptors in the arterial and venous systems as well as the heart and kidney; they result in sodium and water retention. Over time, this volume expansion culminates in the development of edema. Additionally, both vasodilator and vasoconstrictor mechanisms are activated. These include vasoconstrictor systems such as the sympathetic and renin–angiotensin–aldosterone system (RAAS) and vasoconstrictors such as arginine vasopressin and endothelins. Additionally, natriuretic peptides such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and prostaglandins are elevated to counterbalance the vasoconstrictor agents. Elevated adrenergic activity further promotes sodium retention by the kidney and augments RAAS activity. Increased activity of the RAAS results in elevated levels of angiotensin II and subsequently aldosterone. This further bolsters retention of sodium and water. ANP inhibits sodium retention by angiotensin II and vasopressin however, its effect is short-lived and not complete. Similarly, increased aldosterone levels are maintained in heart failure unlike what is observed in healthy individuals. Moreover, aldosterone receptor blockade does not completely reverse the effects of aldosterone. Hyponatremia in heart failure is largely the result of decreased free water clearance secondary to elevated levels of prostaglandins and vasopressin. Use of a selective V2 receptor antagonist markedly improves hyponatremia in heart failure. Many of the resultant compensatory mechanisms that are activated when the heart fails are centralized in the kidney as it receives 25% of all cardiac output each cycle. Taken together, these and other mechanisms help the body compensate from the poor perfusion associated with a failing heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112:e154–235.

    Article  PubMed  Google Scholar 

  2. Edwards RM, Trizna W, Kinter LB. Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol. 1989;256:F274–8.

    PubMed  CAS  Google Scholar 

  3. Creager MA, Faxon DP, Cutler SS, Kohlmann O, Ryan TJ, Gavras H. Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin-angiotensin system and the sympathetic nervous system. J Am Coll Cardiol. 1986;7:758–65.

    Article  PubMed  CAS  Google Scholar 

  4. Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12:446–69.

    Article  PubMed  CAS  Google Scholar 

  5. Smith HW. Salt and water volume receptors: an exercise in physiologic apologetics. Am J Med. 1957;23:623–52.

    Article  PubMed  CAS  Google Scholar 

  6. Zucker IH, Share L, Gilmore JP. Renal effects of left atrial distension in dogs with chronic congestive heart failure. Am J Physiol. 1979;236:H554–60.

    PubMed  CAS  Google Scholar 

  7. Maack T, Camargo MJ, Kleinert HD, Laragh JH, Atlas SA. Atrial natriuretic factor: structure and functional properties. Kidney Int. 1985;27:607–15.

    Article  PubMed  CAS  Google Scholar 

  8. Yasue H, Yoshimura M, Sumida H, et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90:195–203.

    Article  PubMed  CAS  Google Scholar 

  9. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343:246–53.

    Article  PubMed  CAS  Google Scholar 

  10. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.

    Article  PubMed  CAS  Google Scholar 

  11. Epstein M, Duncan DC, Fishman LM. Characterization of the natriuresis caused in normal man by immersion in water. Clin Sci. 1972;43:275–87.

    PubMed  CAS  Google Scholar 

  12. Epstein M, Pins DS, Sancho J, Haber E. Suppression of plasma renin and plasma aldosterone during water immersion in normal man. J Clin Endocrinol Metab. 1975;41:618–25.

    Article  PubMed  CAS  Google Scholar 

  13. Lifschitz MD, Schrier RW. Alterations in cardiac output with chronic constriction of thoracic inferior vena cava. Am J Physiol. 1973;225:1364–70.

    PubMed  CAS  Google Scholar 

  14. Migdal S, Alexander EA, Levinsky NG. Evidence that decreased cardiac output is not the stimulus to sodium retention during acute constriction of the vena cava. J Lab Clin Med. 1977;89:809–16.

    PubMed  CAS  Google Scholar 

  15. Granger JP, Scott JW. Effects of renal artery pressure on interstitial pressure and Na excretion during renal vasodilation. Am J Physiol. 1988;255:F828–33.

    PubMed  CAS  Google Scholar 

  16. Barajas L. Anatomy of the juxtaglomerular apparatus. Am J Physiol. 1979;237:F333–43.

    PubMed  CAS  Google Scholar 

  17. Skott O, Briggs JP. Direct demonstration of macula densa-mediated renin secretion. Science. 1987;237:1618–20.

    Article  PubMed  CAS  Google Scholar 

  18. Schnermann J, Briggs JP. Function of juxtaglomerular apparatus: local control of glomerular hemodynamics in the kidney. In: Seldin OW, Giebisch G, editors. Physiology and pathophysiology. New York: Raven; 1985. p. 669–97.

    Google Scholar 

  19. DiBona GF, Sawin LL. Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am J Physiol. 1982;243:F576–80.

    PubMed  CAS  Google Scholar 

  20. Chapman BJ, Horn NM, Munday KA, Robertson MJ. Changes in renal blood flow in the rat during renal nerve stimulation: the effects of alphs-adrenergic blockers and a dopaminergic blocker [proceedings]. J Physiol. 1979;291:64P–5.

    CAS  Google Scholar 

  21. Schrier RW, Humphreys MH, Ufferman RC. Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava. Circ Res. 1971;29:490–8.

    Article  PubMed  CAS  Google Scholar 

  22. Gaffney TE, Braunwald E. Importance of the adrenergic nervous system in the support of circulatory function in patients with congestive heart failure. Am J Med. 1963;34:320–4.

    Article  PubMed  CAS  Google Scholar 

  23. Packer M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation. 1988;77:721–30.

    Article  PubMed  CAS  Google Scholar 

  24. Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–41.

    Article  PubMed  CAS  Google Scholar 

  25. Leier CV, Binkley PF. Acute positive inotropic intervention: the catecholamines. Am Heart J. 1991;121:1866–70.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol. 1997;18:292–353.

    Article  PubMed  CAS  Google Scholar 

  27. August JT, Nelson DH, Thorn GW. Response of normal subjects to large amounts of aldosterone. J Clin Invest. 1958;37:1549–55.

    Article  PubMed  CAS  Google Scholar 

  28. Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.

    Article  PubMed  CAS  Google Scholar 

  29. Cheville RA, Luetscher JA, Hancock EW, Dowdy AJ, Nokes GW. Distribution, conjugation, and excretion of labeled aldosterone in congestive heart failure and in controls with normal circulation: development and testing of a model with an analog computer. J Clin Invest. 1966;45:1302–16.

    Article  PubMed  CAS  Google Scholar 

  30. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  31. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  PubMed  CAS  Google Scholar 

  32. Steinhausen M, Weis S, Fleming J, Dussel R, Parekh N. Responses of in vivo renal microvessels to dopamine. Kidney Int. 1986;30:361–70.

    Article  PubMed  CAS  Google Scholar 

  33. Lass NA, Glock D, Goldberg LI. Cardiovascular and renal hemodynamic effects of intravenous infusions of the selective DA1 agonist, fenoldopam, used alone or in combination with dopamine and dobutamine. Circulation. 1988;78:1310–5.

    Article  PubMed  CAS  Google Scholar 

  34. Krishna GG, Danovitch GM, Beck FW, Sowers JR. Dopaminergic mediation of the natriuretic response to volume expansion. J Lab Clin Med. 1985;105:214–8.

    PubMed  CAS  Google Scholar 

  35. Chai SY, Sexton PM, Allen AM, Figdor R, Mendelsohn FA. In vitro autoradiographic localization of ANP receptors in rat kidney and adrenal gland. Am J Physiol. 1986;250:F753–7.

    PubMed  CAS  Google Scholar 

  36. Fried TA, McCoy RN, Osgood RW, Stein JH. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am J Physiol. 1986;250:F1119–22.

    PubMed  CAS  Google Scholar 

  37. Goetz KL. Physiology and pathophysiology of atrial peptides. Am J Physiol. 1988;254:E1–15.

    PubMed  CAS  Google Scholar 

  38. Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987;326:697–8.

    Article  PubMed  CAS  Google Scholar 

  39. Cody RJ, Atlas SA, Laragh JH, et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest. 1986;78:1362–74.

    Article  PubMed  CAS  Google Scholar 

  40. Baylis PH. Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol. 1987;253:R671–8.

    PubMed  CAS  Google Scholar 

  41. Mettauer B, Rouleau JL, Bichet D, et al. Sodium and water excretion abnormalities in congestive heart failure. Determinant factors and clinical implications. Ann Intern Med. 1986;105:161–7.

    PubMed  CAS  Google Scholar 

  42. Shade RE, Share L. Volume control of plasma antidiuretic hormone concentration following acute blood volume expansion in the anesthetized dog. Endocrinology. 1975;97:1048–57.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson RJ, Cadnapaphornchai P, Harbottle JA, McDonald KM, Schrier RW. Mechanism of effect of thoracic inferior vena cava constriction on renal water excretion. J Clin Invest. 1974;54:1473–9.

    Article  PubMed  CAS  Google Scholar 

  44. Goetz KL, Bond GC, Bloxham DD. Atrial receptors and renal function. Physiol Rev. 1975;55:157–205.

    PubMed  CAS  Google Scholar 

  45. Russell JA. Vasopressin in vasodilatory and septic shock. Curr Opin Crit Care. 2007;13:383–91.

    Article  PubMed  Google Scholar 

  46. Konstam MA, Gheorghiade M, Burnett Jr JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297:1319–31.

    Article  PubMed  CAS  Google Scholar 

  47. Dzau VJ. Renal and circulatory mechanisms in congestive heart failure. Kidney Int. 1987;31:1402–15.

    Article  PubMed  CAS  Google Scholar 

  48. Dzau VJ, Packer M, Lilly LS, Swartz SL, Hollenberg NK, Williams GH. Prostaglandins in severe congestive heart failure. Relation to activation of the renin–angiotensin system and hyponatremia. N Engl J Med. 1984;310:347–52.

    Article  PubMed  CAS  Google Scholar 

  49. Stokes JB. Integrated actions of renal medullary prostaglandins in the control of water excretion. Am J Physiol. 1981;240:F471–80.

    PubMed  CAS  Google Scholar 

  50. Yared A, Kon V, Ichikawa I. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. J Clin Invest. 1985;75:1477–87.

    Article  PubMed  CAS  Google Scholar 

  51. Krum H, Gu A, Wilshire-Clement M, et al. Changes in plasma endothelin-1 levels reflect clinical response to beta-blockade in chronic heart failure. Am Heart J. 1996;131:337–41.

    Article  PubMed  CAS  Google Scholar 

  52. Miller WL, Redfield MM, Burnett Jr JC. Integrated cardiac, renal, and endocrine actions of endothelin. J Clin Invest. 1989;83:317–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Bakris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazich, I., Bakris, G.L. (2012). Renal Hemodynamic Changes in Heart Failure. In: Bakris, G. (eds) The Kidney in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3694-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3694-2_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3693-5

  • Online ISBN: 978-1-4614-3694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics