Skip to main content

p53-Reactivating Molecules as Research Tools and Anticancer Drugs

  • Chapter
  • First Online:
  • 1061 Accesses

Abstract

Reinstatement of the p53 tumor suppressor function in cancers by small molecules is a promising strategy to combat cancer. In this chapter, we focus on the concept of targeting wild-type p53 and different approaches that have been explored to activate wild-type p53 in tumors. We discuss the emerging notion that small molecules targeting p53 can induce conformational changes that may lead to reactivation of both mutant and wild-type p53. Given that p53 participates in a bewildering diversity of biological processes and that small molecules might have more than one target in a cell, dissecting tumor cell responses to different p53-activating compounds presents a tremendous challenge. We discuss cellular factors that have been shown to modulate the outcome of p53 induction by different compounds. Elucidation of the mechanisms governing the p53 response upon different activating stimuli is of utmost importance for the efficient implementation of p53-targeting treatments into clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed A, Yang J, Maya-Mendoza A, Jackson DA, Ashcroft M (2011) Pharmacological activation of a novel p53-dependent S-phase checkpoint involving CHK-1. Cell Death Dis 2:e160

    PubMed  CAS  Google Scholar 

  • Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK (2007) Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26:3473–3481

    PubMed  CAS  Google Scholar 

  • Bao W, Chen M, Zhao X, Kumar R, Spinnler C, Thullberg M, Issaeva N, Selivanova G, Stromblad S (2011) PRIMA-1 (Met)/APR-246 induces wild-type p53-dependent suppression of malignant melanoma tumor growth in 3D culture and in vivo. Cell Cycle 10:301–307

    PubMed  CAS  Google Scholar 

  • Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129:2456–2457

    PubMed  CAS  Google Scholar 

  • Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL, Wahl GM, Walensky LD (2010) A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18:411–422

    PubMed  CAS  Google Scholar 

  • Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol 7:860–869

    PubMed  CAS  Google Scholar 

  • Bouska A, Eischen CM (2009) Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem Sci 34:279–286

    PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Fabius AW, Mullenders J, Madiredjo M, Velds A, Kerkhoven RM, Bernards R, Beijersbergen RL (2006) An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2:202–206

    PubMed  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288

    PubMed  CAS  Google Scholar 

  • Carter BZ, Mak DH, Schober WD, Koller E, Pinilla C, Vassilev LT, Reed JC, Andreeff M (2010) Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 115:306–314

    PubMed  CAS  Google Scholar 

  • Chene P, Fuchs J, Bohn J, Garcia-Echeverria C, Furet P, Fabbro D (2000) A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol 299:245–253

    PubMed  CAS  Google Scholar 

  • Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37

    PubMed  CAS  Google Scholar 

  • Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J (2011) Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 286:16018–16029

    PubMed  CAS  Google Scholar 

  • D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S, Marchetti A, Del Sal G et al (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19

    PubMed  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A et al (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24:5835–5843

    PubMed  CAS  Google Scholar 

  • Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141

    PubMed  CAS  Google Scholar 

  • Demma M, Maxwell E, Ramos R, Liang L, Li C, Hesk D, Rossman R, Mallams A, Doll R, Liu M et al (2010) SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J Biol Chem 285:10198–10212

    PubMed  CAS  Google Scholar 

  • Dymalla S, Scheffner M, Weber E, Sehr P, Lohrey C, Hoppe-Seyler F, Hoppe-Seyler K (2009) A novel peptide motif binding to and blocking the intracellular activity of the human papillomavirus E6 oncoprotein. J Mol Med 87:321–331

    PubMed  CAS  Google Scholar 

  • Edelman J, Nemunaitis J (2003) Adenoviral p53 gene therapy in squamous cell cancer of the head and neck region. Curr Opin Mol Ther 5:611–617

    PubMed  CAS  Google Scholar 

  • Enge M, Bao W, Hedstrom E, Jackson SP, Moumen A, Selivanova G (2009) MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53. Cancer Cell 15:171–183

    PubMed  CAS  Google Scholar 

  • Feldser DM, Kostova KK, Winslow MM, Taylor SE, Cashman C, Whittaker CA, Sanchez-Rivera FJ, Resnick R, Bronson R, Hemann MT, Jacks T (2010) Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468:572–575

    PubMed  CAS  Google Scholar 

  • Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    PubMed  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510

    PubMed  CAS  Google Scholar 

  • Fraser JA, Madhumalar A, Blackburn E, Bramham J, Walkinshaw MD, Verma C, Hupp TR (2010a) A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53. J Biol Chem 285:37773–37786

    PubMed  CAS  Google Scholar 

  • Fraser JA, Vojtesek B, Hupp TR (2010b) A novel p53 phosphorylation site within the MDM2 ubiquitination signal: I. phosphorylation at SER269 in vivo is linked to inactivation of p53 function. J Biol Chem 285:37762–37772

    PubMed  CAS  Google Scholar 

  • Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV, Proctor MR, Rudiger S, Fersht AR (2002) A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 99:937–942

    PubMed  CAS  Google Scholar 

  • Gilkes DM, Chen L, Chen J (2006) MDMX regulation of p53 response to ribosomal stress. EMBO J 25:5614–5625

    PubMed  CAS  Google Scholar 

  • Goodwin EC, DiMaio D (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97:12513–12518

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    PubMed  CAS  Google Scholar 

  • Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A, Gluch A, Kel A, Sangfelt O, Selivanova G (2009) Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 15:441–453

    PubMed  CAS  Google Scholar 

  • Gudkov AV, Komarova EA (2010) Radioprotection: smart games with death. J Clin Invest 120:2270–2273

    PubMed  CAS  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    PubMed  CAS  Google Scholar 

  • Hainaut P, Wiman K (2005) 25 years of p53 research. Springer, Dordrecht

    Google Scholar 

  • Hedstrom E, Eriksson S, Zawacka-Pankau J, Arner ES, Selivanova G (2009) p53-dependent inhibition of TrxR1 contributes to the tumor-specific induction of apoptosis by RITA. Cell Cycle 8:3576–3583

    PubMed  Google Scholar 

  • Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    PubMed  CAS  Google Scholar 

  • Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M (2001) Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 98:1218–1223

    PubMed  CAS  Google Scholar 

  • Hietanen S, Lain S, Krausz E, Blattner C, Lane DP (2000) Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA 97:8501–8506

    PubMed  CAS  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W, Will H, Schmitz ML (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4:1–10

    PubMed  CAS  Google Scholar 

  • Hu B, Gilkes DM, Chen J (2007) Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 67:8810–8817

    PubMed  CAS  Google Scholar 

  • Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J (2006) MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 281:33030–33035

    PubMed  CAS  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328

    PubMed  CAS  Google Scholar 

  • Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G (2003) Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA 100:13303–13307

    PubMed  CAS  Google Scholar 

  • Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1:993–1000

    PubMed  CAS  Google Scholar 

  • Jiang M, Milner J (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21:6041–6048

    PubMed  CAS  Google Scholar 

  • Junttila MR, Karnezis AN, Garcia D, Madriles F, Kortlever RM, Rostker F, Brown Swigart L, Pham DM, Seo Y, Evan GI, Martins CP (2010) Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468:567–571

    PubMed  CAS  Google Scholar 

  • Kelley ML, Keiger KE, Lee CJ, Huibregtse JM (2005) The global transcriptional effects of the human papillomavirus E6 protein in cervical carcinoma cell lines are mediated by the E6AP ubiquitin ligase. J Virol 79:3737–3747

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Aonuma M, Lee SH, Fukutake S, McCormick F (2008) E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27:5303–5314

    PubMed  CAS  Google Scholar 

  • Kochetkov DV, Il’inskaia GV, Komarov PG, Strom E, Agapova LS, Ivanov AV, Budanov AV, Frolova EI, Chumakov PM (2007) Transcriptional inhibition of human papilloma virus in cervical carcinoma cells reactivates functions of the tumor suppressor p53. Mol Biol (Mosk) 41:515–523

    CAS  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L et al (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    PubMed  CAS  Google Scholar 

  • Lam S, Lodder K, Teunisse AF, Rabelink MJ, Schutte M, Jochemsen AG (2010) Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29:2415–2426

    PubMed  CAS  Google Scholar 

  • Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J, Fersht AR, Hainaut P, Wiman KG, Bykov VJ (2009) PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15:376–388

    PubMed  CAS  Google Scholar 

  • Lane DP, Cheok CF, Lain S (2010) p53-based cancer therapy. Cold Spring Harb Perspect Biol 2:a001222

    PubMed  Google Scholar 

  • Lau LM, Nugent JK, Zhao X, Irwin MS (2008) HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27:997–1003

    PubMed  CAS  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C, Teunisse A, Lam S, Ramos Y, Mohan A et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    PubMed  CAS  Google Scholar 

  • Le Guezennec X, Bulavin DV (2010) WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 35:109–114

    PubMed  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    PubMed  CAS  Google Scholar 

  • Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M (2003) HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 100:12009–12014

    PubMed  CAS  Google Scholar 

  • Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL (2008) Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 15:841–848

    PubMed  CAS  Google Scholar 

  • Liu W, He L, Ramirez J, Ratain MJ (2009) Interactions between MDM2 and TP53 genetic alterations, and their impact on response to MDM2 inhibitors and other chemotherapeutic drugs in cancer cells. Clin Cancer Res 15:7602–7607

    PubMed  CAS  Google Scholar 

  • Long J, Parkin B, Ouillette P, Bixby D, Shedden K, Erba H, Wang S, Malek SN (2010) Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 116:71–80

    PubMed  CAS  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    PubMed  CAS  Google Scholar 

  • Luu Y, Bush J, Cheung KJ Jr, Li G (2002) The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res 276:214–222

    PubMed  CAS  Google Scholar 

  • Manfredi JJ (2010) The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24:1580–1589

    PubMed  CAS  Google Scholar 

  • Marchenko ND, Moll UM (2007) The role of ubiquitination in the direct mitochondrial death program of p53. Cell Cycle 6:1718–1723

    PubMed  CAS  Google Scholar 

  • Marine JC, Lozano G (2010) Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 17:93–102

    PubMed  CAS  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    PubMed  CAS  Google Scholar 

  • Meek DW, Hupp TR (2010) The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 20:19–28

    PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    PubMed  CAS  Google Scholar 

  • Nahi H, Selivanova G, Lehmann S, Mollgard L, Bengtzen S, Concha H, Svensson A, Wiman KG, Merup M, Paul C (2008) Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br J Haematol 141:445–453

    PubMed  CAS  Google Scholar 

  • Nieves-Neira W, Rivera MI, Kohlhagen G, Hursey ML, Pourquier P, Sausville EA, Pommier Y (1999) DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol Pharmacol 56:478–484

    PubMed  CAS  Google Scholar 

  • Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G, Milner J, Orlova EV (2006) The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J 25:5191–5200

    PubMed  CAS  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    PubMed  CAS  Google Scholar 

  • Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW (2006) Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 66:3169–3176

    PubMed  CAS  Google Scholar 

  • Pazgier M, Liu M, Zou G, Yuan W, Li C, Li C, Li J, Monbo J, Zella D, Tarasov SG, Lu W (2009) Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc Natl Acad Sci USA 106:4665–4670

    PubMed  CAS  Google Scholar 

  • Peirce SK, Findley HW (2009) The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73. Int J Oncol 34:1395–1402

    PubMed  CAS  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    PubMed  CAS  Google Scholar 

  • Phillip LR, Jorden JL, Rivera MI, Wolfe TL, Upadhyayb K, Stinson SF (2002) Identification of the major metabolite of 2,5-bis(5-hydroxymethyl-2-thienyl)furan (NSC 652287), an antitumor agent, in the S9 subcellular fraction of dog liver cells. J Chromatogr B Analyt Technol Biomed Life Sci 767:27–33

    PubMed  Google Scholar 

  • Puca R, Nardinocchi L, Gal H, Rechavi G, Amariglio N, Domany E, Notterman DA, Scarsella M, Leonetti C, Sacchi A et al (2008) Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res 68:3707–3714

    PubMed  CAS  Google Scholar 

  • Ray RM, Bhattacharya S, Johnson LR (2011) Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 16:35–44

    PubMed  CAS  Google Scholar 

  • Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM, Zhu F, Mills N, Smithson DC, Regni CA, Bashford D et al (2010) Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem 285:10786–10796

    PubMed  CAS  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Moncada A, Sacchi A, Selivanova G, Soddu S (2009) HIPK2 regulation by MDM2 determines tumor cell response to the p53-reactivating drugs nutlin-3 and RITA. Cancer Res 69:6241–6248

    PubMed  CAS  Google Scholar 

  • Ringshausen I, O’Shea CC, Finch AJ, Swigart LB, Evan GI (2006) Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10:501–514

    PubMed  CAS  Google Scholar 

  • Rivera MI, Stinson SF, Vistica DT, Jorden JL, Kenney S, Sausville EA (1999) Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem Pharmacol 57:1283–1295

    PubMed  CAS  Google Scholar 

  • Roh JL, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM (2011) p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol 47:8–15

    PubMed  CAS  Google Scholar 

  • Saddler C, Ouillette P, Kujawski L, Shangary S, Talpaz M, Kaminski M, Erba H, Shedden K, Wang S, Malek SN (2008) Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 111:1584–1593

    PubMed  CAS  Google Scholar 

  • Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, Soucek L, Nasi S (2011) The action mechanism of the myc inhibitor termed omomyc may give clues on how to target myc for cancer therapy. PLoS One 6:e22284

    PubMed  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    PubMed  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    PubMed  CAS  Google Scholar 

  • Selivanova G (2010) Therapeutic targeting of p53 by small molecules. Semin Cancer Biol 20:46–56

    PubMed  CAS  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105:3933–3938

    PubMed  CAS  Google Scholar 

  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    PubMed  CAS  Google Scholar 

  • Spinnler C, Hedstrom E, Li H, de Lange J, Nikulenkov F, Teunisse AF, Verlaan-de Vries M, Grinkevich V, Jochemsen AG, Selivanova G (2011) Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX. Cell Death Differ 18(11):1736–1745

    PubMed  CAS  Google Scholar 

  • Talis AL, Huibregtse JM, Howley PM (1998) The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273:6439–6445

    PubMed  CAS  Google Scholar 

  • Tidow H, Melero R, Mylonas E, Freund SM, Grossmann JG, Carazo JM, Svergun DI, Valle M, Fersht AR (2007) Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc Natl Acad Sci USA 104:12324–12329

    PubMed  CAS  Google Scholar 

  • Wade M, Wang YV, Wahl GM (2010) The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 20:299–309

    PubMed  CAS  Google Scholar 

  • Wade M, Wong ET, Tang M, Stommel JM, Wahl GM (2006) Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 281:33036–33044

    PubMed  CAS  Google Scholar 

  • Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL (2006) Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23:251–263

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng T, Chen X, Song X, Meng X, Bhatta N, Pan S, Jiang H, Liu L (2011) MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. J Gastroenterol Hepatol 26:371–377

    PubMed  CAS  Google Scholar 

  • Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM (2007) Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci USA 104:12365–12370

    PubMed  CAS  Google Scholar 

  • Wang Z, Li B (2010) Mdm2 links genotoxic stress and metabolism to p53. Protein Cell 1:1063–1072

    PubMed  CAS  Google Scholar 

  • Vaseva AV, Marchenko ND, Moll UM (2009) The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 8:1711–1719

    PubMed  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    PubMed  CAS  Google Scholar 

  • Weinmann L, Wischhusen J, Demma MJ, Naumann U, Roth P, Dasmahapatra B, Weller M (2008) A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 15:718–729

    PubMed  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    PubMed  CAS  Google Scholar 

  • von Knebel DM, Rittmuller C, zur Hausen H, Durst M (1992) Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int J Cancer 51:831–834

    Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    PubMed  CAS  Google Scholar 

  • Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, Vassilev LT (2008) Elevated MDM2 boosts the apoptotic activity of p53-MDM2 binding inhibitors by facilitating MDMX degradation. Cell Cycle 7:1604–1612

    PubMed  CAS  Google Scholar 

  • Xia M, Knezevic D, Vassilev LT (2011) p21 does not protect cancer cells from apoptosis induced by nongenotoxic p53 activation. Oncogene 30:346–355

    PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  • Yang J, Ahmed A, Ashcroft M (2009) Activation of a unique p53-dependent DNA damage response. Cell Cycle 8:1630–1632

    PubMed  CAS  Google Scholar 

  • Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia M V, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC et al (2005) Small molecule inhibitors of HDM2 ubiquitin ligase ­activity stabilize and activate p53 in cells. Cancer Cell 7:547–559

    PubMed  CAS  Google Scholar 

  • Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G (2010a) Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847–1855

    PubMed  CAS  Google Scholar 

  • Zhao CY, Szekely L, Bao W, Selivanova G (2010b) Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res 70:3372–3381

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Selivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grinkevich, V.V., Warnecke, A., Selivanova, G. (2013). p53-Reactivating Molecules as Research Tools and Anticancer Drugs. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_13

Download citation

Publish with us

Policies and ethics