Skip to main content

Design of Experiments with R

  • Chapter
  • First Online:
  • 7724 Accesses

Part of the book series: Use R! ((USE R,volume 36))

Abstract

Design of experiments (DoE) is one of the most important tools in the Six Sigma methodology. It is the essence of the Improve phase and the basis for the design of robust processes. An adequate use of DoE will lead to the improvement of a process, but a bad design can result in wrong conclusions and engender the opposite of the desired effect: inefficiencies, higher costs, and less competitiveness. In this chapter, we introduce the foundations of DoE and describe the essential functions in R to perform it and analyze its results. We will describe two-level factorial designs using a representative example of how DoE should be used to achieve the improvement of a process in a Six Sigma way. The chapter is not intended as a thorough review of DoE. The idea is to introduce a simple model in an intuitive way. For more technical or advance training a number of references are given at the end of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The experts do not know the recipe used for each individual pizza.

References

  1. Allen, T. T. (2010). Introduction to engineering statistics and lean Six Sigma—Statistical quality control and design of experiments and systems. New York: Springer.

    Google Scholar 

  2. Berger, P., & Maurer, R. (2002). Experimental design: With applications in management, engineering, and the sciences. Duxbury titles of related interest. CA: Duxbury/Thomson Learning.

    Google Scholar 

  3. Box, G., & Jones, S. (1992). Designing products that are robust to the environment. Total Quality Management, 3(3), 265–285.

    Article  Google Scholar 

  4. Box, G., Hunter, J., & Hunter, W. (2005). Statistics for experimenters: Design, innovation, and discovery. Wiley series in probability and statistics. New York: Wiley.

    Google Scholar 

  5. Grömping, U. (2011). Cran task view: Design of experiments (doe) & analysis of experimental data. http://cran.r-project.org/web/views/ExperimentalDesign.html. Retrieved 24.01.2012.

  6. Grömping, U. (2012). Project: (industrial) doe in r. http://prof.beuth-hochschule.de/groemping/software/design-of-experiments/project-industrial-doe-in-r/. Retrieved 24.01.2012.

  7. Lalanne, C. (2006). R companion to montgomery’s design and analysis of experiments. http://www.aliquote.org/articles/tech/dae/. Retrieved 19.01.2012.

  8. Lopez-Fidalgo, J. (2009). A critical overview on optimal experimental designs. Boletin de Estadística e Investigación Operativa, 25(1), 14–21. http://www.seio.es/BEIO/files/BEIOv25n1_ES_J.Lopez-Fidalgo.pdf. Retrieved 19.01.2012.

  9. Mee, R. (2009). A comprehensive guide to factorial two-level experimentation. New York: Springer.

    Book  Google Scholar 

  10. Montgomery, D. (2008). Design and analysis of experiments. Student solutions manual. New York: Wiley.

    Google Scholar 

  11. Myers, R., Montgomery, D., & Anderson-Cook, C. (2009). Response surface methodology: Process and product optimization using designed experiments. Wiley series in probability and statistics. New York: Wiley.

    Google Scholar 

  12. Pyzdek, T., & Keller, P. (2009). The Six Sigma handbook: A complete guide for green belts, black belts, and managers at all levels. New York: McGraw-Hill.

    Google Scholar 

  13. Rasch, D., Pilz, J., & Simecek, P. (2010). Optimal experimental design with R. London: Taylor & Francis.

    Google Scholar 

  14. Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. USA: Wiley.

    MATH  Google Scholar 

  15. Vikneswaran (2005). An r companion to “experimental design”. http://cran.r-project.org/doc/contrib/Vikneswaran-ED_companion.pdf. Retrieved 19.01.2012.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cano, E.L., Moguerza, J.M., Redchuk, A. (2012). Design of Experiments with R. In: Six Sigma with R. Use R!, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3652-2_11

Download citation

Publish with us

Policies and ethics