Skip to main content

Spin-Fluctuation Theory of Cluster Magnetism

  • Chapter
  • First Online:
Metal Clusters and Nanoalloys

Abstract

Recent developments in the theory of the magnetic properties of transition-metal clusters at finite temperatures are reviewed. After a brief introductory overview of the experimental situation, we present the theoretical framework, which is based on a Hubbard–Stratonovich functional-integral formulation of the corresponding canonical and grand-canonical equilibrium partition functions. The theory is applied to Fe, Co, and Ni clusters by using the static approximation to the functional integration and by solving the underlying single-particle electronic structure by means of a real-space recursive expansion of the local Greens functions. First, we formally recover the T = 0 limit of the theory and with it the most significant ground-state properties of small magnetic clusters. Second, we consider the low-temperature limit of the local spin-fluctuation energies ΔF l (ξ) at different atoms l, as a function of the local exchange fields ξ. Representative results for the size, structural, and local-environment dependence of ΔF l (ξ) in Fe N and Ni N clusters are discussed. The interplay between fluctuations of the module and of the relative orientation of the local magnetic moments is analyzed. The strong dependence of the spin-excitation spectrum on the local atomic environment and on interatomic bond-length relaxations is demonstrated. Third, we derive a simple relation between the low- and high-temperature values of the cluster magnetization per atom, which takes into account the effects of short-range magnetic order (SRMO). Using this relation, and by comparison with experiment, an important degree of SRMO in the clusters is inferred even at relatively large T. Finally, the temperature dependence of the magnetic properties of Fe N clusters having for N < 25 atoms is discussed. To this aim, the statistical averages in the static approximation are performed rigorously by using a parallel-tempering Monte Carlo sampling of all exchange-field configurations \(({\xi }_{1},\ldots {\xi }_{N})\). In this way, the interplay between different local environments, the possibility of SRMO, and the size-dependent electronic structure are taken into account on the same footing. Representative results for the average magnetic moment per atom, the local magnetizations, and nearest neighbor spin-correlation functions are shown. A remarkable dependence on size and structure is revealed, which reflects the importance of the electronic structure to the cluster spin excitations. The correlation between local atomic environment and finite T magnetism is analyzed in some detail by means of the spin-correlation functions. The role of bond-length relaxations on the temperature-dependent properties is quantified. An interpretation of our electronic results in terms of Ising or Heisenberg models of localized magnetism implies a strong dependence of the effective interatomic exchange couplings on size and local coordination number, which defies straightforward transferability and easy generalizations. Finally, we conclude with a glimpse into future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As usual, μB = eℏ ∕ 2mc = 5. 79 ×10 − 5 eV/T stands for the Bohr magneton.

  2. 2.

    For the sake of clarity, a hat (ˆ) is used to distinguish operators from numbers.

  3. 3.

    Recent applications of the mean-field approach to TM clusters and nanostructures at T = 0 may be found, for example, in [29] and [6163], and in references therein.

  4. 4.

    As in an N-step random walk the root mean square average of the total magnetic moment per atom of a cluster having N uncorrelated local moments of size μ0 is \({\mu }_{0}/\sqrt{N}\).

  5. 5.

    From Fig. 5.10 it is possible to infer the distance dependence of cluster “Curie” T C(N). Despite changes as a function of size and structure, T C(N) always remains of the same order of magnitude as in the bulk. The actual value of T C is the result of an interplay between two effects directly related to the reduction of the coordination numbers: the enhancement of local magnetic moments and the reduction of the number of NN couplings. For some clusters, this may lead to incidental compensations and to values of T C(N) close to the bulk one. However, in most cases one of the contributions dominates over the other (see Fig. 5.10).

References

  1. Cox DM, Trevor DJ, Whetten RL, Rohlfing EA, Kaldor A (1985) Phys Rev B 32:7290

    Article  CAS  Google Scholar 

  2. de Heer WA, Milani P, Châtelain A (1990) Phys Rev Lett 65:488

    Article  Google Scholar 

  3. Bucher JP, Douglass DC, Bloomfield LA (1991) Phys Rev Lett 66:3052

    Article  CAS  Google Scholar 

  4. Douglass DC, Cox AJ, Bucher JP, Bloomfield LA (1993) Phys Rev B 47:12874

    Article  CAS  Google Scholar 

  5. Douglass DC, Bucher JP, Bloomfield LA (1992) Phys Rev B 45:6341

    Article  Google Scholar 

  6. Billas IML, Becker JA, Châtelain A, de Heer WA (1993) Phys Rev Lett 71:4067

    Article  CAS  Google Scholar 

  7. Billas IML, Châtelain A, de Heer WA (1994) Science 265:1682

    Article  CAS  Google Scholar 

  8. Gerion D, Hirt A, Billas IML, Châtelain A, de Heer WA (2000) Phys Rev B 62:7491

    Article  CAS  Google Scholar 

  9. Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Phys Rev Lett 76:1441

    Article  CAS  Google Scholar 

  10. Knickelbein MB (2001) J Chem Phys 115:1983

    Article  CAS  Google Scholar 

  11. Knickelbein MB (2007) Phys Rev B 75:014401

    Article  Google Scholar 

  12. Binns C (2001) Surf Sci Rep 44:1

    Article  CAS  Google Scholar 

  13. Zitoun D, Respaud M, Fromen M-C, Casanove MJ, Lecante P, Amiens C, Chaudret B (2002) Phys Rev Lett 89:037203

    Article  Google Scholar 

  14. Lau JT, Föhlisch A, Nietubyc R, Reif M, Wurth W (2002) Phys Rev Lett 89:057201

    Article  CAS  Google Scholar 

  15. Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H (2003) Science 300:1130

    Article  CAS  Google Scholar 

  16. Bansmann J, Baker SH, Binns C, Blackman JA, Bucher J-P, Dorantes-Dávila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer K-H, Pastor GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Surf Sci Rep 56:189

    Article  CAS  Google Scholar 

  17. Xu X, Yin S, Moro R, de Heer WA (2005) Phys Rev Lett 95:237209

    Article  Google Scholar 

  18. Yin S, Moro R, Xu X, de Heer WA (2007) Phys Rev Lett 98:113401

    Article  Google Scholar 

  19. Gruner ME, Rollmann G, Entel P, Farle M (2008) Phys Rev Lett 100:087203

    Article  Google Scholar 

  20. See, for instance, Pastor GM (2001). In: Guet C, Hobza P, Spiegelman F, David F (eds) Atomic clusters and nanoparticles, Lectures Notes of the Les Houches Summer School of Theoretical Physics. EDP Sciences, Les Ulis/Springer, Berlin, p. 335ff

    Google Scholar 

  21. Lee K, Callaway J, Dhar S (1984) Phys Rev B 30:1724

    Article  CAS  Google Scholar 

  22. Lee K, Callaway J, Kwong K, Tang R, Ziegler A (1985) Phys Rev B 31:1796

    Article  CAS  Google Scholar 

  23. Lee K, Callaway J (1993) Phys Rev B 48:15358

    Article  CAS  Google Scholar 

  24. Pastor GM, Dorantes-Dávila J, Bennemann KH (1988) Phys B 149:22

    CAS  Google Scholar 

  25. Pastor GM, Dorantes-Dávila J, Bennemann KH (1989) Phys Rev B 40:7642

    Article  CAS  Google Scholar 

  26. Castro M, Jamorski Ch, Salahub D (1997) Chem Phys Lett 271:133

    Article  CAS  Google Scholar 

  27. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1998) J Phys Chem A 102:1748

    Article  CAS  Google Scholar 

  28. Diéguez O, Alemany MMG, Rey C, Ordejón P, Gallego LJ (2001) Phys Rev B 63:205407

    Article  Google Scholar 

  29. Guirado-López RA, Dorantes-Dávila J, Pastor GM (2003) Phys Rev Lett 90:226402

    Article  Google Scholar 

  30. Pastor GM, Dorantes-Dávila J, Pick S, Dreyssé H (1995) Phys Rev Lett 75:326

    Article  CAS  Google Scholar 

  31. Rollmann G, Gruner ME, Hucht A, Meyer R, Entel P, Tiago ML, Chelikowsky JR (2007) Phys Rev Lett 99:083402

    Article  Google Scholar 

  32. Pastor GM, Dorantes-Dávila J, Bennemann KH (2004) Phys Rev B 70:064420

    Article  Google Scholar 

  33. Andriotis AN, Fthenakis ZG, Menon M (2006) Europhys Lett 76:1088

    Article  CAS  Google Scholar 

  34. Polesya S, Sipr O, Bornemann S, Minár J, Ebert H (2006) Europhys Lett 74:1074

    Article  CAS  Google Scholar 

  35. Pastor GM, Hirsch R, Mühlschlegel B (1994) Phys Rev Lett 72:3879

    Article  CAS  Google Scholar 

  36. Pastor GM, Hirsch R, Mühlschlegel B (1996) Phys Rev B 53:10382

    Article  CAS  Google Scholar 

  37. López-Urías F, Pastor GM (1999) Phys Rev B 59:5223

    Article  Google Scholar 

  38. López-Urías F, Pastor GM, Bennemann KH (2000) J Appl Phys 87:4909

    Article  Google Scholar 

  39. López-Urías F, Pastor GM (2005) J Magn Magn Mater 294:e27

    Article  Google Scholar 

  40. Jinlong Y, Toigo F, Kelin W (1994) Phys Rev B 50:7915

    Article  CAS  Google Scholar 

  41. Jinlong Y, Toigo F, Kelin W, Manhong Z (1994) Phys Rev B 50:7173

    Article  CAS  Google Scholar 

  42. Wildberger K, Stepanyuk VS, Lang P, Zeller R, Dederichs PH (1995) Phys Rev Lett 75:509

    Article  CAS  Google Scholar 

  43. Nayak SK, Weber SE, Jena P, Wildberger K, Zeller R, Dederichs PH, Stepanyuk VS, Hergert W (1997) Phys Rev B 56:8849

    Article  CAS  Google Scholar 

  44. Villaseñor-González P, Dorantes-Dávila J, Dreyssé H, Pastor GM (1997) Phys Rev B 55:15084

    Article  Google Scholar 

  45. Binder K, Rauch R, Wildpaner V (1970) J Phys Chem Solids 31:391

    Article  CAS  Google Scholar 

  46. Dorantes-Dávila J, Pastor GM, Bennemann KH (1986) Solid State Commun 59:159

    Article  Google Scholar 

  47. Dorantes-Dávila J, Pastor GM, Bennemann KH (1986) Solid State Commun 60:465

    Article  Google Scholar 

  48. Garibay-Alonso R, Dorantes-Dávila J, Pastor GM (2006) Phys Rev B 73:224429

    Article  Google Scholar 

  49. Hubbard J (1979) Phys Rev B 19:2626

    Article  CAS  Google Scholar 

  50. Hubbard J (1979) Phys Rev B 20:4584

    Article  CAS  Google Scholar 

  51. Hasegawa H (1980) J Phys Soc Jpn 49:178

    Article  CAS  Google Scholar 

  52. Hasegawa H (1980) J Phys Soc Jpn 963

    Google Scholar 

  53. Kakehashi Y (1981) J Phys Soc Jpn 50:2251

    Article  CAS  Google Scholar 

  54. Moriya T (ed) (1981) Electron correlation and magnetism in narrow-band systems, vol. 29. Springer series in solid state sciences. Springer, Heidelberg

    Google Scholar 

  55. Vollhardt D et al. (1999) Advances in solid state physics, vol 38. Vieweg, Wiesbaden, p. 383

    Book  Google Scholar 

  56. Pastor GM, Dorantes-Dávila J (1995) Phys Rev B 52:13799

    Article  CAS  Google Scholar 

  57. Slater JC (1960) Quantum theory of atomic structure, vols. I and II. McGraw-Hill, New York

    Google Scholar 

  58. Mühlschlegel B (1968) Z Phys 208:94

    Article  Google Scholar 

  59. Stratonovich RL (1958) Sov Phys Dokl 2:416

    Google Scholar 

  60. Hubbard J (1959) Phys Rev Lett 3:77

    Article  Google Scholar 

  61. Nicolas G, Dorantes-Dávila J, Pastor GM (2006) Phys Rev B 74:014415

    Article  Google Scholar 

  62. Muñoz-Navia M, Dorantes-Dávila J, Zitoun D, Amiens C, Chaudret B, Casanove M-J, Lecante P, Jaouen N, Rogalev A, Respaud M, Pastor GM (2008) Faraday Discuss 138:181

    Article  Google Scholar 

  63. Muñoz-Navia M, Dorantes-Dávila J, Zitoun D, Amiens C, Jaouen N, Rogalev A, Respaud M, Pastor GM (2009) Appl Phys Lett 95:233107

    Article  Google Scholar 

  64. Landau DP, Binder K (2005) A guide to Monte Carlo simulations in statistical physics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  65. Korenman V, Prange RE (1984) Phys Rev Lett 53:186

    Article  CAS  Google Scholar 

  66. Haines EM, Clauberg R, Feder R (1985) Phys Rev Lett 54:932

    Article  CAS  Google Scholar 

  67. Haydock R (1980) In: Ehreinreich H, Seitz F, Turnbull D (eds) Solid state physics, vol. 35. Academic, New York, p 215

    Google Scholar 

  68. See for example, Newman MEJ, Barkema GT (1999) Monte Carlo methods in statistical physics. Oxford University Press, Oxford

    Google Scholar 

  69. Swendsen RH, Wang JS (1987) Phys Rev Lett 58:86

    Article  Google Scholar 

  70. Wolff U (1989) Phys Rev Lett 62:361

    Article  CAS  Google Scholar 

  71. Berg BA, Neuhaus T (1991) Phys Lett B 267:249

    Article  Google Scholar 

  72. Berg BA, Neuhaus T (1992) Phys Rev Lett 68:9

    Article  Google Scholar 

  73. Marinari E, Parisi G (1992) Europhys Lett 19:451

    Article  CAS  Google Scholar 

  74. Hukushima K, Nemoto K (1996) J Phys Soc Jpn 65:1604

    Article  CAS  Google Scholar 

  75. Garibay-Alonso R, Dorantes-Dávila J, Pastor GM (2009) Phys Rev B 79:134401

    Article  Google Scholar 

  76. Guevara J, Parisi F, Llois AM, Weissmann M (1997) Phys Rev B 55:13283

    Article  CAS  Google Scholar 

  77. Vega A, Dorantes-Dávila J, Balbás LC, Pastor GM (1993) Phys Rev B 47:4742

    Article  CAS  Google Scholar 

  78. Postnikov AV, Entel P, Soler JM (2003) Eur Phys D 25:261

    Article  CAS  Google Scholar 

  79. Sipr O, Kosuth M, Ebert H (2004) Phys Rev B 70:174423

    Article  Google Scholar 

  80. Heine V (1967) Phys Rev 153:673

    Article  CAS  Google Scholar 

  81. Harrison WA (1983) Phys Rev B 27:3592

    Article  CAS  Google Scholar 

  82. Moruzzi VL, Marcus PM (1988) Phys Rev B 38:1613

    Article  CAS  Google Scholar 

  83. Pappas DP, Kämper K-P, Hobster H (1990) Phys Rev Lett 64:3179

    Article  CAS  Google Scholar 

  84. Allenpasch R, Bischof A (1992) Phys Rev Lett 69:3385

    Article  Google Scholar 

  85. Qiu ZQ, Pearson J, Bader SD (1993) Phys Rev Lett 70:1006

    Article  Google Scholar 

  86. Arnold CS, Pappas DP, Popov AP (1999) Phys Rev Lett 83:3305

    Article  CAS  Google Scholar 

  87. Kukunin A, Prokop J, Elmers HJ (2007) Phys Rev B 76:134414

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CONACyT-Mexico (grant No. 62292), by the Deutsche Forschungsgemeinschaft, and by the Mexico-Germany exchange program PROALMEX. The authors (RGA and JDD) would like to acknowledge the kind hospitality and support of the University of Kassel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Pastor .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garibay-Alonso, R., Dorantes-Dávila, J., Pastor, G.M. (2013). Spin-Fluctuation Theory of Cluster Magnetism. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_5

Download citation

Publish with us

Policies and ethics