Skip to main content

Evolution of Resource and Energy Management in Biologically Realistic Gene Regulatory Network Models

  • Chapter
  • First Online:
Evolutionary Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((volume 751))

Abstract

We describe the use of computational models of evolution of artificial gene regulatory networks to understand the topologies of biological gene regulatory networks. We summarize results from three complementary approaches that explicitly represent biological processes of transcription, translation, metabolism and gene regulation: a fine-grained model that allows detailed molecular interactions, a coarse-grained model that allows rapid evolution of many generations, and a fixed-architecture model that allows for comparison of different hypotheses. In the first two cases, we are able to evolve networks towards the biological fitness objectives of survival and reproduction. A theme that emerges is that the control of cell energy and resources is a major driver of gene network topology and function. This is demonstrated in the fine-grained model with the emergence of biologically realistic mRNA and protein turnover rates that optimize energy usage and cell division time, and the evolution of basic repressor activities; in the fixed architecture model with a negative self-regulating gene evolving major efficiencies in mRNA usage; and in the coarse-grained model by the need for the inclusion of basal gene expression to obtain biologically plausible networks and the emergence of global regulators keeping all cellular systems under negative control. In summary, we demonstrate the value of biologically realistic computer evolution techniques, and the importance of energy and resource management in driving the topology and function of gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belle A, Tanay A, Shamir R, O’Shea EK (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci USA 103:13004–13009

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein JA, Khodursky AB, Lin P-H, Lin-Chao S, Cohen SN, Global (2002) analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99:9697–9702

    Google Scholar 

  3. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  PubMed  CAS  Google Scholar 

  4. Clarkson J, Shu J-C, Harris DA, Campbell ID, Yudkin MD (2004) Fluorescence and kinetic analysis of the SpoIIAB phosphorylation reaction, a key regulator of sporulation in Bacillus subtilis. Biochemistry 43:3120–3128

    Article  PubMed  CAS  Google Scholar 

  5. Cordero X, Hogeweg P (2006) Feed-forward loop circuits as a side effect of genome evolution. Mol Biol Evol 23:1931–1936

    Article  PubMed  CAS  Google Scholar 

  6. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  7. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  8. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  9. Fernando CT, Goldstein RA, Husbands P, Stekel DJ (2010) In silico biology. Pac Symp Biocomput 477–480

    Google Scholar 

  10. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci USA 98:8821–8826

    Article  PubMed  CAS  Google Scholar 

  11. François P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci USA 101:580–585

    Article  PubMed  Google Scholar 

  12. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  CAS  Google Scholar 

  13. Herring CD, Raghunathan A, Honisch C, Applebee TPMK, Joyce AR, Albert TJ, Blattner FR, van der Boom D, Cantor CR, Palsson BØ(2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature 28:1406–1412

    Google Scholar 

  14. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: From theories to phenotypes. Nat Rev Genet 6:451–464

    Article  PubMed  CAS  Google Scholar 

  15. Kashtan N, Noor E, Alon U (2007) Varying environments can speed up evolution. Proc Natl Acad Sci USA 104:13711–13716

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins DJ, Stekel DJ (2009) A new model for investigating the evolution of transcription control networks. Artif Life 15:259–91

    Article  PubMed  Google Scholar 

  17. Jenkins DJ, Stekel DJ (2010) De novo evolution of complex, global and hierarchical gene regulatory mechanisms. J Mol Evol 71:128–40

    Article  PubMed  CAS  Google Scholar 

  18. Jenkins DJ, Stekel DJ (2010) Stochasticity versus determinism: consequences for realistic gene regulatory network modelling and evolution. J Mol Evol 70:215–231

    Article  PubMed  CAS  Google Scholar 

  19. Kauffman SA (1967) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  Google Scholar 

  20. Kauffman SA (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  21. Koch SJ, Wang MD (2003) Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. Phys Rev Lett 91:028103

    Article  PubMed  Google Scholar 

  22. Kuo PD, Banzhaf W, Leier A (2006) Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. Biosystems 85:177–200

    Article  Google Scholar 

  23. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423:139–144

    Article  PubMed  CAS  Google Scholar 

  24. Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100:11980–11985

    Article  PubMed  CAS  Google Scholar 

  25. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819

    Article  PubMed  CAS  Google Scholar 

  26. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  27. Moran NA, Mira A (2001) The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol 2:research0054

    Google Scholar 

  28. Nath K, Koch AL (1970) Protein degradation in Escherichia coli: 1. Measurement of rapidly and slowly decaying components. J Biol Chem 245:2889–2900

    CAS  Google Scholar 

  29. Noble D (2002) Modeling the heart – from genes to cells to the whole organ. Science 295:1678–1682

    Article  PubMed  CAS  Google Scholar 

  30. Ofria C, Wilke CO (2004) Avida: a software platform for research in computational evolutionary biology. Artif Life 10:191–229

    Article  PubMed  Google Scholar 

  31. Palsson BØ(2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Phillipe N, Crozat E, Lenski RE, Schneider D (2007) Evolution of global regulatory networks during a long-term experiment with Escherichia coli. Bioessays 29:846–860

    Article  Google Scholar 

  33. Quayle AP, Bullock S (2006) Modelling the evolution of genetic regulatory networks. J Theor Biol 238:737–753

    Article  PubMed  CAS  Google Scholar 

  34. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N et al. (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl J Med 365: 709–717

    Article  PubMed  CAS  Google Scholar 

  35. Rosenfeld N, Elowitz MB Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323:785–793

    Article  PubMed  CAS  Google Scholar 

  36. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. aps. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  37. Soyer OS, Bonhoeffer S (2006) Evolution of complexity in signalling pathways. Proc Natl Acad Sci USA 103:16337–16347

    Article  PubMed  CAS  Google Scholar 

  38. Stekel DJ, Jenkins DJ (2008) Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression. BMC Syst Biol 2:6

    Article  PubMed  Google Scholar 

  39. Sundararaj S, Guo A, Habibi-Nazhad B, Rouani M, Stothard P, Ellison M, Wishart DS (2004) The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic Acid Res 32: D293–D295

    Article  PubMed  CAS  Google Scholar 

  40. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98:8614–8619

    Article  PubMed  CAS  Google Scholar 

  41. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA 99:5860–5865

    Article  PubMed  CAS  Google Scholar 

  43. Wilcox JL, Dunbar HE, Wolfinger RD, Moran NA (2003) Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol Microbiol 48:1491–1500

    Article  PubMed  CAS  Google Scholar 

  44. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov J. Stekel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stekel, D.J., Jenkins, D.J. (2012). Evolution of Resource and Energy Management in Biologically Realistic Gene Regulatory Network Models. In: Soyer, O. (eds) Evolutionary Systems Biology. Advances in Experimental Medicine and Biology, vol 751. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3567-9_14

Download citation

Publish with us

Policies and ethics