Skip to main content

Abstract

Chapter 14 is devoted to nonoscillation and oscillation problems for nonlinear impulsive delay differential equations. Impulses provide an adequate description of sharp system changes when the time of the change is negligible when compared to the process dynamics. The main approach to study these problems is the linearized oscillation theory which was introduced and justified in Chap. 10. Using linearized results, explicit oscillation and nonoscillation conditions are obtained for impulsive models of population dynamics, such as the delay logistic equation and the generalized Lasota-Wazewska equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., Karakoc, F.: A survey on oscillation of impulsive delay differential equations. Comput. Math. Appl. 60, 1648–1685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arino, O., Győri, I.: Qualitative properties of the solutions of a delay differential equation with impulses. II. Oscillations. Differ. Equ. Dyn. Syst. 7, 161–179 (1999)

    MATH  Google Scholar 

  3. Berezansky, L., Braverman, E.: On oscillation of an impulsive logistic equation. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 9, 377–396 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear nonautonomous delay differential equation. J. Comput. Appl. Math. 151, 119–127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear delay impulsive equation. J. Comput. Appl. Math. 161, 477–495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan, Y.R., Feng, W., Yan, J.R.: Linearized oscillation of nonlinear impulsive delay differential equations. Comput. Math. Appl. 44, 1267–1274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)

    Google Scholar 

  8. Fishman, S., Marcus, R.: A model for spread of plant disease with periodic removals. J. Math. Biol. 21, 149–158 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gopalsamy, K.: Stability and Oscillation in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht, Boston, London (1992)

    Google Scholar 

  10. Győri, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, New York (1991)

    Google Scholar 

  11. Kocic, V.L., Ladas, G., Qian, C.: Linearized oscillations in nonautonomous delay differential equations. Differ. Integral Equ. 6, 671–683 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Kuang, Y., Zhang, B.G., Zhao, T.: Qualitative analysis of nonautonomous nonlinear delay differential equation. Tohoku Math. J. 43, 509–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ladas, G., Qian, C.: Linearized oscillations for nonautonomous delay difference equations. In: Oscillation and Dynamics in Delay Equations, San Francisco, CA, 1991. Contemp. Math., vol. 129, pp. 115–125. Am. Math. Soc., Providence (1992)

    Chapter  Google Scholar 

  14. Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments. Dekker, New York (1987)

    Google Scholar 

  15. Li, B., Kuang, Y.: Sharp conditions for oscillations in some nonlinear nonautonomous delay equations. Nonlinear Anal. 29, 1265–1276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X., Ballinger, G.: Uniform asymptotic stability of impulsive delay differential equations. Comput. Math. Appl. 41, 903–915 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, Z.G., Shen, J.H.: Oscillation for solutions of nonlinear neutral differential equations with impulses. Comput. Math. Appl. 42, 1285–1292 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. d’Onofrio, A.: Stability properties of pulse vaccination strategy in SEIR epidemic models. Math. Biosci. 179, 57–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sficas, Y.G., Staikos, V.A.: The effect of retarded actions on nonlinear oscillations. Proc. Am. Math. Soc. 46, 259–264 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shen, J.H., Yu, J.S., Qian, X.Z.: A linearized oscillation result for odd-order neutral delay differential equations. J. Math. Anal. Appl. 186, 365–374 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, J.: Oscillation of nonlinear delay impulsive differential equations and inequalities. J. Math. Anal. Appl. 265, 332–342 (2002)

    Article  MathSciNet  Google Scholar 

  22. Yu, J., Yan, J.R.: Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 207, 388–396 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A. (2012). Linearized Oscillation Theory for Nonlinear Delay Impulsive Equations. In: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3455-9_14

Download citation

Publish with us

Policies and ethics