Skip to main content

Multiple Systems Spaceflight Effects

  • Chapter
  • First Online:
Space Pharmacology

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

  • 808 Accesses

Abstract

While none of the physiological systems discussed previously operates independently of the rest of the body, the immune system is remarkable for its integration with many other areas of physiology. Furthermore, one of the hazards associated with leaving low-Earth orbit is increased exposure to radiation, which has effects on multiple physiological systems, including the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F.P. Baqai, D.S. Gridley et al., Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl. Physiol. 106(6), 1935–1942 (2009)

    Article  Google Scholar 

  • N. Barbarin, B. Tilquin et al., Radiosterilization of cefotaxime: investigation of potential degradation compounds by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A 929(1–2), 51–61 (2001)

    Article  Google Scholar 

  • A.L. Bhatia, K. Manda, Study on pretreatment of melatonin against radiation-induced oxidative stress in mice. Environ. Toxicol. Pharmacol. 18, 13–20 (2004)

    Article  Google Scholar 

  • A.L. Bhatia, A. Sharma et al., Prophylactic effect of flaxseed oil against radiation-induced hepatotoxicity in mice. Phytother. Res. 21(9), 852–859 (2007)

    Article  Google Scholar 

  • A. Bilska, L. Wlodek, Lipoic acid – the drug of the future? Pharmacol. Rep. 57(5), 570–577 (2005)

    Google Scholar 

  • S.A. Bustin, Why the need for qPCR publication guidelines? – The case for MIQE. Methods 50(4), 217–226 (2010)

    Article  Google Scholar 

  • S.A. Bustin, V. Benes et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622 (2009)

    Article  Google Scholar 

  • C.N. Coleman, H.B. Stone et al., Medicine. Modulation of radiation injury. Science 304(5671), 693–694 (2004)

    Article  Google Scholar 

  • B. Crucian, Risk of Crew Adverce Health Event Due to Altered Immune Response (H. NASA, HHC, 2009)

    Google Scholar 

  • A.S. Crucq, B. Tilquin, Method to identify products induced by radiosterilization. A study of cefotaxime sodium. J. Pharm. Belg. 51(6), 285–288 (1996)

    Google Scholar 

  • B. Du, V. Daniels et al., Evaluation of physical and chemical changes in pharmaceuticals flown on space missions. AAPS J. 13(2), 299–308 (2011)

    Article  Google Scholar 

  • S.A. Greenacre, H. Ischiropoulos, Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 34(6), 541–581 (2001)

    Article  Google Scholar 

  • J. Huff, F.A. Cucinotta, Risk of Degenerative Tissue or Other Health Effects from Radiation Exposure (H. NASA, HHC, 2008)

    Google Scholar 

  • M.A. Juergensmeyer, E.A. Juergensmeyer et al., Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgr. Sci. Technol. 12(1), 41–47 (1999)

    Google Scholar 

  • M.A. Kacena, P. Todd, Gentamicin: effect on E. coli in space. Microgr. Sci. Technol. XII(3–4), 135–137 (2000)

    Google Scholar 

  • M. Karbownik, R.J. Reiter, Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc. Soc. Exp. Biol. Med. 225(1), 9–22 (2000)

    Article  Google Scholar 

  • A.R. Kennedy, J. Guan et al., Countermeasures against space radiation induced oxidative stress in mice. Radiat. Environ. Biophys. 46(2), 201–203 (2007)

    Article  Google Scholar 

  • T.B. Knudsen, G.P. Daston, MIAME guidelines. Reprod. Toxicol. 19(3), 263 (2005)

    Article  Google Scholar 

  • M. Kojima, K. Kangawa, Ghrelin: structure and function. Physiol. Rev. 85(2), 495–522 (2005)

    Article  Google Scholar 

  • M.R. Landauer, V. Srinivasan et al., Genistein treatment protects mice from ionizing radiation injury. J. Appl. Toxicol. 23(6), 379–385 (2003)

    Article  Google Scholar 

  • B.E. Lehnert, R. Iyer, Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Hum. Exp. Toxicol. 21(2), 65–69 (2002)

    Article  Google Scholar 

  • K.J. Lindsay, P.J. Coates et al., The genetic basis of tissue responses to ionizing radiation. Br. J. Radiol. 80(1), S2–S6 (2007)

    Article  Google Scholar 

  • L. Maggi, L. Segale et al., Chemical and physical stability of hydroxypropylmethylcellulose matrices containing diltiazem hydrochloride after gamma irradiation. J. Pharm. Sci. 92(1), 131–141 (2003)

    Article  Google Scholar 

  • L. Maggi, L. Segale et al., Polymers-gamma ray interaction. Effects of gamma irradiation on modified release drug delivery systems for oral administration. Int. J. Pharm. 269(2), 343–351 (2004)

    Article  Google Scholar 

  • K. Manda, A.L. Bhatia, Pre-administration of beta-carotene protects tissue glutathione and lipid peroxidation status following exposure to gamma radiation. J. Environ. Biol. 24(4), 369–372 (2003)

    Google Scholar 

  • K. Manda, M. Ueno et al., Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J. Pineal Res. 46(1), 71–78 (2009)

    Article  Google Scholar 

  • K. Manda, M. Ueno et al., alpha-Lipoic acid attenuates x-irradiation-induced oxidative stress in mice. Cell Biol. Toxicol. 23(2), 129–137 (2007)

    Article  Google Scholar 

  • S.K. Mehta, R.J. Cohrs et al., Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol. 72(1), 174–179 (2004)

    Article  Google Scholar 

  • J.S. Murley, Y. Kataoka et al., Delayed radioprotection by nuclear transcription factor kappaB-mediated induction of manganese superoxide dismutase in human microvascular endothelial cells after exposure to the free radical scavenger WR1065. Free Radic. Biol. Med. 40(6), 1004–1016 (2006)

    Article  Google Scholar 

  • C.A. Nickerson, C.M. Ott et al., Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68(6), 3147–3152 (2000)

    Article  Google Scholar 

  • C.A. Nickerson, C.M. Ott et al., Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbiol. Methods 54(1), 1–11 (2003)

    Article  Google Scholar 

  • C.A. Nickerson, C.M. Ott et al., Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68(2), 345–361 (2004)

    Article  Google Scholar 

  • NIH, NIH renews major research program to develop medical countermeasures against radiological and nuclear threats (2010), from, http://www.nih.gov/news/health/aug2010/niaid-19.htm

  • M.C. Noverr, G.B. Huffnagle, Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12(12), 562–568 (2004)

    Article  Google Scholar 

  • D.A. Payne, S.K. Mehta et al., Incidence of Epstein-Barr virus in astronaut saliva during spaceflight. Aviat. Space Environ. Med. 70(12), 1211–1213 (1999)

    Google Scholar 

  • D.L. Pierson, R.P. Stowe et al., Epstein-Barr virus shedding by astronauts during space flight. Brain Behav. Immunol. 19(3), 235–242 (2005)

    Article  Google Scholar 

  • R.J. Reiter, D.X. Tan et al., Melatonin as an antioxidant: physiology versus pharmacology. J. Pineal Res. 39(2), 215–216 (2005)

    Article  Google Scholar 

  • G. Sener, L. Kabasakal et al., Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats. Pharmacol. Res. 53(3), 241–252 (2006)

    Article  Google Scholar 

  • K.G. Shah, R. Wu et al., Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol. Med. 15(11–12), 407–414 (2009)

    Google Scholar 

  • D. Soyal, A. Jindal et al., Modulation of radiation-induced biochemical alterations in mice by rosemary (Rosemarinus officinalis) extract. Phytomedicine 14(10), 701–705 (2007)

    Article  Google Scholar 

  • T.P. Stein, M.J. Leskiw, Oxidant damage during and after spaceflight. Am. J. Physiol. Endocrinol. Metab. 278(3), E375–E382 (2000)

    Google Scholar 

  • D.R. Stickney, C. Dowding et al., 5-androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression. Int. Immunopharmacol. 7(4), 500–505 (2007)

    Article  Google Scholar 

  • A. Sullivan, C. Edlund et al., Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 1(2), 101–114 (2001)

    Article  Google Scholar 

  • D.X. Tan, L.C. Manchester et al., One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42(1), 28–42 (2007)

    Article  Google Scholar 

  • D.D. Taub, Novel connections between the neuroendocrine and immune systems: the ghrelin immunoregulatory network. Vitam. Horm. 77, 325–346 (2008)

    Article  Google Scholar 

  • R. Tixador, G. Richoilley et al., Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat. Space Environ. Med. 56(8), 748–751 (1985)

    Google Scholar 

  • K. Tsuji, P.D. Rahn et al., 60Co-irradiation as an alternate method for sterilization of penicillin G, neomycin, novobiocin, and dihydrostreptomycin. J. Pharm. Sci. 72(1), 23–26 (1983)

    Article  Google Scholar 

  • G. Wang, H.M. Lee et al., Ghrelin – not just another stomach hormone. Regul. Pept. 105(2), 75–81 (2002)

    Article  Google Scholar 

  • S.S. Wang, T.A. Good, Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J. Cell Biochem. 83(4), 574–584 (2001)

    Article  Google Scholar 

  • M.H. Whitnall, C.E. Inal et al., In vivo radioprotection by 5-androstenediol: stimulation of the innate immune system. Radiat. Res. 156(3), 283–293 (2001)

    Article  Google Scholar 

  • M.H. Whitnall, V. Villa et al., Molecular specificity of 5-androstenediol as a systemic radioprotectant in mice. Immunopharmacol. Immunotoxicol. 27(1), 15–32 (2005)

    Google Scholar 

  • J.W. Wilson, C.M. Ott et al., Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA 104(41), 16299–16304 (2007)

    Article  ADS  Google Scholar 

  • J.W. Wilson, C.M. Ott et al., Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One 3(12), e3923 (2008)

    Article  ADS  Google Scholar 

  • J.W. Wilson, R. Ramamurthy et al., Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci. USA 99(21), 13807–13812 (2002)

    Article  ADS  Google Scholar 

  • H. Wu, J. Huff, et al., Risk of Acute radiation Syndromes due to Solar Particle Events (H. NASA, HHC, 2008)

    Google Scholar 

  • M. Xiao, M.H. Whitnall, Pharmacological countermeasures for the acute radiation syndrome. Curr. Mol. Pharmacol. 2(1), 122–133 (2009)

    Article  Google Scholar 

  • J. Xiong, Y. Li et al., Effects of simulated microgravity on nitric oxide level in cardiac myocytes and its mechanism. Sci. China C. Life Sci. 46(3), 302–309 (2003)

    Google Scholar 

  • Y. Zhou, M.T. Mi, Genistein stimulates hematopoiesis and increases survival in irradiated mice. J. Radiat. Res. (Tokyo) 46(4), 425–433 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Virginia E. Wotring

About this chapter

Cite this chapter

Wotring, V.E. (2012). Multiple Systems Spaceflight Effects. In: Space Pharmacology. SpringerBriefs in Space Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3396-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3396-5_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3395-8

  • Online ISBN: 978-1-4614-3396-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics