Skip to main content

Predicting Diabetes

  • Chapter
  • First Online:

Abstract

The astute reader, seeing the length of this chapter, will immediately surmise that the ability of the biomedical community to predict diabetes is quite limited, despite a larger number of studies. We encourage our readers to learn with us from past studies and to prepare for the more promising approaches presented near the close of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jesudason DR, Dunstan K, Leong D, Wittert GA. Macrovascular risk and diagnostic criteria for type 2 diabetes: implications for the use of FPG and HbA(1c) for cost-effective screening. Diabetes Care. 2003;26(2):485–90.

    Article  PubMed  Google Scholar 

  2. Wong TY, Liew G, Tapp RJ, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371:736–43.

    Article  PubMed  CAS  Google Scholar 

  3. Toth MJ, Tchernof A. Lipid metabolism in the elderly. Eur J Clin Nutr. 2000;54 Suppl 3:S121–5.

    Article  PubMed  CAS  Google Scholar 

  4. Nakao C, Ookawara T, Sato Y, et al. Extracellular superoxide dismutase in tissues from obese (ob⁄ob) mice. Free Radic Res. 2000;33:229–41.

    Article  PubMed  CAS  Google Scholar 

  5. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    PubMed  CAS  Google Scholar 

  6. Park J, Chung JJ, Kim JB. New evaluations of redox regulating system in adipose tissue of obesity. Diabetes Res Clin Pract. 2007;77 Suppl 1:S11–6.

    Article  PubMed  CAS  Google Scholar 

  7. Brown TM, Voeks JH, Bittner V, Safford MM. Variations in prevalent cardiovascular disease and future risk by metabolic syndrome classification in the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am Heart J. 2010;159(3):385–91.

    Article  PubMed  Google Scholar 

  8. Rabinowitz D, Zierler KL. Forearm metabolism in obesity and its response to intra-arterial insulin: characterization of insulin resistance and evidence for adaptive hyperinsulinism. J Clin Invest. 1962;41:2173–81.

    Article  PubMed  CAS  Google Scholar 

  9. Sicree RA, Zimmet PZ, King HO, et al. Plasma insulin response among Nauruans. Prediction of deterioration in glucose tolerance over 6 yr. Diabetes. 1987;36(2):179–86.

    Article  PubMed  CAS  Google Scholar 

  10. Warram JH, Martin BC, Krolewski AS, et al. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990;113(12):909–15.

    PubMed  CAS  Google Scholar 

  11. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med. 1993;329(27):1988–92.

    Article  PubMed  CAS  Google Scholar 

  12. Weyer C, Hanson RL, Tataranni PA, et al. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes. 2000;49(12):2094–101.

    Article  PubMed  CAS  Google Scholar 

  13. Modan M, Halkin H, Almog S, et al. Hyperinsulinemia: a link between hypertension, obesity and glucose intolerance. J Clin Invest. 1985;75:809–17.

    Article  PubMed  CAS  Google Scholar 

  14. Dankner R, Chetrit A, Shanik MH, et al. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: a preliminary report. Diabetes Care. 2009;32(8):1464–6.

    Article  PubMed  CAS  Google Scholar 

  15. Haffner SM, Stern MP, Mitchell BD, et al. Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity, and body-fat distribution. Diabetes. 1990;39(3):283–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bjørnholt JV, Erikssen G, Liestøl K K, et al. Prediction of type 2 diabetes in healthy middle-aged men with special emphasis on glucose homeostasis. Results from 22.5 years’ follow-up. Diabet Med. 2001;18(4):261–7.

    Article  PubMed  Google Scholar 

  17. Tirosh A, Shai I, Tekes-Manova D, et al., Israeli Diabetes Research Group. Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med. 2005;353(14):1454–62.

    Article  Google Scholar 

  18. Nguyen QM, Srinivasan SR, Xu JH, et al. Fasting plasma glucose levels within the normoglycemic range in childhood as a predictor of prediabetes and type 2 diabetes in adulthood. The Bogalusa Heart Study. Arch Pediatr Adolesc Med. 2010;164(2):124–8.

    Article  PubMed  Google Scholar 

  19. Gutt M, Davis CL, Spitzer SB, et al. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47(3):177–84.

    Article  PubMed  CAS  Google Scholar 

  20. Hanley AJ, Williams K, Gonzalez C, et al., San Antonio Heart Study; Mexico City Diabetes Study; Insulin Resistance Atherosclerosis Study. Prediction of type 2 diabetes using simple measures of insulin resistance: combined results from the San Antonio Heart Study, the Mexico City Diabetes Study, and the Insulin Resistance Atherosclerosis Study. Diabetes. 2003;52(2):463–9.

    Google Scholar 

  21. Rutter MK, Wilson PWF, Sullivan LM, et al. Use of alternative thresholds defining insulin resistance to predict incident type 2 diabetes mellitus and cardiovascular disease. Circulation. 2008;117:1003–9.

    Article  PubMed  Google Scholar 

  22. Haffner SM, Miettinen H, Gaskill SP, et al. Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans. Diabetes. 1995;44(12):1386–91.

    Article  PubMed  CAS  Google Scholar 

  23. Dankner R, Abdul-Ghani MA, Gerber Y, et al. Predicting the 20-year diabetes incidence rate. Diabetes Metab Res Rev. 2007;23(7):551–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sato KK, Hayashi T, Harita N, et al. Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes. Diabetes Care. 2009;32:644–6.

    Article  PubMed  CAS  Google Scholar 

  25. Selvin E, Ning Y, Steffes MW, et al. Glycated hemoglobin and the risk of kidney disease and retinopathy in adults with and without diabetes. Diabetes. 2011;60:298–305.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrannini E, Nannipieri M, Williams K, et al. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes. 2004;53(1):160–5.

    Article  PubMed  CAS  Google Scholar 

  27. Lyssenko V, Almgren P, Anevski D, et al., Botnia study group. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes. 2005;54(1):166–74.

    Article  Google Scholar 

  28. Mason CC, Hanson RL, Knowler WC. Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes. 2007;56:2054–61.

    Article  PubMed  CAS  Google Scholar 

  29. Tabák AG, Jokela M, Akbaraly TN, et al. Trajectories of glycemia, insulin sensitivity and insulin secretion preceding the diagnosis of type 2 diabetes: the Whitehall II study. Lancet. 2009;373:2215–21.

    Article  PubMed  Google Scholar 

  30. Klein S, Allison DB, Heymsfield SB, Association for Weight Management and Obesity Prevention; NAASO; Obesity Society; American Society for Nutrition; American Diabetes Association; Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health. Diabetes Care. 2007;30:1647–52.

    Article  Google Scholar 

  31. Warne DK, Charles MA, Hanson RL, et al. Comparison of body size measurements as predictors of NIDDM in Pima Indians. Diabetes Care. 1995;18(4):435–9.

    Article  PubMed  CAS  Google Scholar 

  32. Stevens J, Couper D, Pankow J, et al. Sensitivity and specificity of anthropometrics for the prediction of diabetes in a biracial cohort. Obes Res. 2001;9(11):696–705.

    Article  PubMed  CAS  Google Scholar 

  33. Rolandsson O, Hägg E, Nilsson M, et al. Prediction of diabetes with body mass index, oral glucose tolerance test and islet cell autoantibodies in a regional population. J Intern Med. 2001;249(4):279–88.

    Article  PubMed  CAS  Google Scholar 

  34. Wannamethee SG, Papacosta O, Whincup PH, et al. Assessing prediction of diabetes in older adults using different adiposity measures: a 7 year prospective study in 6,923 older men and women. Diabetologia. 2010;53(5):890–8.

    Article  PubMed  CAS  Google Scholar 

  35. Preis SR, Pencina MJ, D’Agnostino RB. Abstract 1469: neck circumference and development of cardiovascular disease risk factors in the Framingham heart study. Circulation. 2009;120:S509.

    Article  Google Scholar 

  36. Chiu M, Austin PC, Manuel DG, Shah BR, Tu JV. Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care. 2011;34(8):1741–8.

    Article  PubMed  Google Scholar 

  37. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36:232–40.

    Article  PubMed  CAS  Google Scholar 

  38. Dotevall A, Johansson S, Wilhelmsen L, et al. Increased levels of triglycerides, BMI and blood pressure and low physical activity increase the risk of diabetes in Swedish women. A prospective 18-year follow-up of the BEDA study. Diabet Med. 2004;21(6):615–22.

    Article  PubMed  CAS  Google Scholar 

  39. Tirosh A, Shai I, Bitzur R, et al. Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care. 2008;31(10):2032–7.

    Article  PubMed  CAS  Google Scholar 

  40. Yaouanq JM. Diabetes and haemochromatosis: current concepts, management and prevention. Diabete Metab. 1995;21(5):319–29.

    PubMed  CAS  Google Scholar 

  41. Salonen JT, Tuomainen TP, Nyyssönen K, et al. Relation between iron stores and non-insulin dependent diabetes in men: case-control study. BMJ. 1998;317:727.

    Article  PubMed  CAS  Google Scholar 

  42. Jiang R, Manson JE, Meigs JB, et al. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA. 2004;291(6):711–7.

    Article  PubMed  CAS  Google Scholar 

  43. Forouhi NG, Harding AH, Allison M, et al. Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study. Diabetologia. 2007;50(5):949–56.

    Article  PubMed  CAS  Google Scholar 

  44. Vozarova B, Stefan N, Lindsay RS, et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889–95.

    Article  PubMed  CAS  Google Scholar 

  45. Sattar N, McConnachie A, Ford I, et al. Serial metabolic measurements and conversion to type 2 diabetes in the west of Scotland coronary prevention study: specific elevations in alanine aminotransferase and triglycerides suggest hepatic fat accumulation as a potential contributing factor. Diabetes. 2007;56(4):984–91.

    Article  PubMed  CAS  Google Scholar 

  46. Hanley AJG, Williams K, Festa A, et al. Elevations in markers of liver injury and risk of type 2 diabetes. The Insulin Resistance Atherosclerosis Study. Diabetes. 2004;53:2623–32.

    Article  PubMed  CAS  Google Scholar 

  47. Malmstrom R, Taskinen MR, Karonen SL, et al. Insulin increases plasma leptin concentrations in normal subjects and patients with NIDDM. Diabetologia. 1996;39:993–6.

    Article  PubMed  CAS  Google Scholar 

  48. Zimmet P, Hodge A, Nicolson M, et al. Serum leptin concentration, obesity, and insulin resistance in Western Samoans: cross sectional study. BMJ. 1996;313:965–9.

    Article  PubMed  CAS  Google Scholar 

  49. Shih LY, Liou TH, Chao JC, et al. Leptin, superoxide dismutase, and weight loss: initial leptin predicts weight loss. Obesity (Silver Spring). 2006;14(12):2184–92.

    Article  CAS  Google Scholar 

  50. McNeely MJ, Boyko EJ, Weigle DS, et al. Association between baseline plasma leptin levels and subsequent development of diabetes in Japanese Americans. Diabetes Care. 1999;22(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  51. Schmidt MI, Duncan BB, Vigo A, et al., ARIC Investigators. Leptin and incident type 2 diabetes: risk or protection? Diabetologia. 2006;49(9):2086–96.

    Article  Google Scholar 

  52. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adiposespecific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–9.

    Article  PubMed  CAS  Google Scholar 

  53. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86(8):3815–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002;360:57–8.

    Article  PubMed  CAS  Google Scholar 

  55. Daimon M, Oizumi T, Saitoh T, et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese Population: the Funagata study. Diabetes Care. 2003;26(7):2015–20.

    Article  PubMed  CAS  Google Scholar 

  56. Duncan BB, Schmidt MI, Pankow JS, et al. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2004;53(9):2473–8.

    Article  PubMed  CAS  Google Scholar 

  57. Snijder MB, Heine RJ, Seidell JC, et al. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women: the Hoorn study. Diabetes Care. 2006;29(11):2498–503.

    Article  PubMed  CAS  Google Scholar 

  58. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    Article  PubMed  CAS  Google Scholar 

  59. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342: 836–43.

    Article  PubMed  CAS  Google Scholar 

  60. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.

    Article  PubMed  CAS  Google Scholar 

  61. Freeman DJ, Norrie J, Caslake MJ, et al., West of Scotland Coronary Prevention Study. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes. 2002;51(4):1131–7.

    Article  Google Scholar 

  62. Festa A, D’Agostino R Jr, Tracy RP, et al., Insulin Resistance Atherosclerosis Study. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51(4):1131–7.

    Article  Google Scholar 

  63. Festa A, Williams K, Tracy RP, et al. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes. Circulation. 2006;113(14):1753–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.

    Article  PubMed  CAS  Google Scholar 

  65. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, Buring JE, Gaziano JM, Liu S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009 Sep 17;361(12):1152–63. Epub 2009 Aug 5.

    Article  PubMed  CAS  Google Scholar 

  66. Reaven GM. Banting lecture: role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  PubMed  CAS  Google Scholar 

  67. Lorenzo C, Okoloise M, Williams K, et al., San Antonio Heart Study. The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003;26(11):3153–9.

    Article  Google Scholar 

  68. Stern MP, Williams K, González-Villalpando C, et al. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27(11):2676–81.

    Article  PubMed  Google Scholar 

  69. Ford ES, Li C, Sattar N. Metabolic syndrome and incident diabetes: current state of the ­evidence. Diabetes Care. 2008;31:1898–904.

    Article  PubMed  Google Scholar 

  70. Urdea M, Kolberg J, Wilber J, et al. Validation of a multimarker model for assessing risk of type 2 diabetes from a five-year prospective study of 6784 Danish people (Inter99). J Diabetes Sci Technol. 2009;3(4):748–55.

    PubMed  Google Scholar 

  71. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.

    Article  PubMed  CAS  Google Scholar 

  72. Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–31.

    Article  PubMed  Google Scholar 

  73. Schulze MB, Hoffmann K, Boeing H, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care. 2007;30:510–5.

    Article  PubMed  Google Scholar 

  74. Bergmann A, Li J, Wang L, et al. A simplified Finnish diabetes risk score to predict type 2 diabetes risk and disease evolution in a German population. Horm Metab Res. 2007;39(9):677–82.

    Article  PubMed  CAS  Google Scholar 

  75. Hippisley-Cox J, Coupland C, Robson J, et al. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ. 2009;338:b880.

    Article  PubMed  Google Scholar 

  76. Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208–19.

    Article  PubMed  CAS  Google Scholar 

  77. Schulze MB, Weikert C, Pischon T. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam study. Diabetes Care. 2009;32:2116–9.

    Article  PubMed  Google Scholar 

  78. Jensen AC, Barder A, Kumari M, et al. Associations of common genetic variants with age-related changes in fasting and postload glucose. Evidence from 18 years of follow-up of the Whitehall II Cohort. Diabetes. 2011;60(5):1617–23.

    Article  PubMed  CAS  Google Scholar 

  79. McCance DR, Hanson RL, Charles MA, et al. Comparison of tests for glycated haemoglobin and fasting and two hour plasma glucose concentrations as diagnostic methods for diabetes. BMJ. 1994;308:1323–8.

    Article  PubMed  CAS  Google Scholar 

  80. Engelgau MM, Thompson TJ, Herman WH, et al. Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes. Diagnostic criteria and performance revisited. Diabetes Care. 1997;20(5):785–91.

    Article  PubMed  CAS  Google Scholar 

  81. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20(7):1183–97.

    Google Scholar 

  82. Jonas JB, Xu L, Xie XW, et al. Relationship between fasting glucose and retinopathy for diagnosis of diabetes: results from a population-based study in urban and rural China. Retina. 2010;30(8):1223–7.

    Article  PubMed  Google Scholar 

  83. Bergman M. Inadequacies of absolute threshold levels for diagnosing prediabetes. Diabetes Metab Res Rev. 2010;26:3–6.

    Article  PubMed  Google Scholar 

  84. Toshikazu S, Makoto W, Junko N, et al., Zensharen Study for Prevention of Lifestyle Diseases Group. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels. A Randomized Controlled Trial. Arch Intern Med. 2011;171(15):1352–60.

    Article  Google Scholar 

  85. Abdul-Ghani MA, Defronzo RA. Plasma glucose concentration and prediction of future risk of type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S194–8.

    Article  PubMed  CAS  Google Scholar 

  86. Dankner R, Danoff A, Roth J. Can ‘personalized diagnostics’ promote earlier intervention for dysglycaemia? Hypothesis ready for testing. Diabetes Metab Res Rev. 2010;26:7–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Michael Bergman for his insightful comments and to Ian Whitford and Sana Qureshi for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Dankner MD, MPH .

Editor information

Editors and Affiliations

Glossary

AIR

Acute insulin response

ALT

Alanine aminotransferase

AST

Aspartate aminotransferase

BMI

Body mass index

DRS

Diabetes risk score

EHC

Euglycemic-hyperinsulinemic clamp

FPG

Fasting plasma glucose

GGT

Gamma-glutamyltranspeptidase

GL

Glycemic load

HbA1c

Glycated hemoglobin

HDL

High-density lipoprotein

IFG

Impaired fasting glucose

IGT

Impaired glucose tolerance

IL-6

Interleukin 6

LDL

Low-density lipoprotein

MCDS

Mexico City Diabetes Study

NAFLD

Nonalcoholic fatty liver disease

PAI-1

Plasminogen activator inhibitor-1

SHBG

Sex hormone binding globulin

SNPs

Single nucleotide polymorphisms

WHR

Waist-to-hip ratio

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dankner, R., Roth, J. (2012). Predicting Diabetes. In: LeRoith, D. (eds) Prevention of Type 2 Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3314-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3314-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3313-2

  • Online ISBN: 978-1-4614-3314-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics