Skip to main content

Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 219))

Abstract

This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organophosphorus (OP) and carbamate insecticides (Knaak et al. 2004, 2008). The parameters shown in Table 1 (Blancato et al. 2000) are needed for developing pyrethroid PBPK/PD models, as is information on the metabolic pathways of specific pyrethroids in laboratory test animals and humans. Parameters may be obtained by fitting the output from models to experimental data gathered from in vivo studies (Zhang et al. 2007; Nong et al. 2008), in conjunction with using (1) experimental data obtained from in vitro studies, (2) quantitative structure–activity relationships (QSAR) and (3) other mathematical models, such as the mechanistic Poulin-Theil (2000; 2002a; b) algorithms for obtaining blood:tissue partition coefficients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abernathy CO, Casida JE (1973) Pyrethroid insecticides: esterase cleavage in relation to selective toxicity. Science 179:1235–1236

    CAS  Google Scholar 

  • Ackermann P, Bourgeois F, Drabek J (1980) The optical isomers of alpha-cyano-3-phenoxybenzyl 3-1,2-dibromo-2,2-dichloroethyl-2,2-dimethylcyclopropanecarboxylate and their insecticidal activities. J Pestic Sci 11:169–179

    CAS  Google Scholar 

  • Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliver Rev 50:S41–S67

    CAS  Google Scholar 

  • Allen S, Leah A (1990) Lambda-cyhalothrin: acute oral toxicity study in the rat. Zeneca Agricultural Products Laboratory No. CTL/P/3209:AR4840, Wilmington, DE.

    Google Scholar 

  • Anadon A, Martinez-Larranaga MR, Fernandez-Cruz ML, Diaz MJ, Fernadez MC, Martinez MA (1996) Toxicokinetics of deltamethrin and its 4′-OH-metabolite in the rat. Toxicol Appl Pharmacol 141:8–16

    CAS  Google Scholar 

  • Anand SS, Bruckner JV, Haines WT, Muralidhara S, Fisher JW, Padilla S (2006) Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol Appl Pharmacol 212:156–166

    CAS  Google Scholar 

  • Andersen ME, Dennison JE (2001) Mode of action and tissue dosimetry in current and future risk assessments. Sci Total Environ 274(1–3):3–14

    CAS  Google Scholar 

  • Angerer J, Ritter A (1997) Determination of metabolites of pyrethroids in human urine using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr 695:217–226

    CAS  Google Scholar 

  • Artursson P, Palm K, Luthan K (1996) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 22:67–84

    CAS  Google Scholar 

  • Audegond L, Collas E, Glomot R (1981a) RU 25474 (tralomethrin) single administration study by oral route in the rat. Study No. RU-4BE-81.240/A, Roussel-Uclaf, Paris.

    Google Scholar 

  • Audegond L, Collas E, Glomot R (1981b) RU 25474 (tralomethrin) single administration study by oral route in the rat. Study No. 81240 DS/84/A, Roussel-Uclaf, Paris.

    Google Scholar 

  • Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ (2002) The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos 30:1497–1503

    CAS  Google Scholar 

  • Baker H, Kligman AM (1967) Measurement of transepidermal water loss by electrical hygrometry. Arch Dermatol 96:441–452

    CAS  Google Scholar 

  • Barbero AM, Frasch HF (2009) Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro 23:1–13

    CAS  Google Scholar 

  • Barrueco D, Herrera A, Caballo C, Delapena E (1992) Cytogenic effects of permethrin in cultured human-lymphocytes. Mutagenesis 7:433–437

    CAS  Google Scholar 

  • Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8:33–45

    CAS  Google Scholar 

  • Bast GE, Taeschner D, Kampffmeyer HG (1997) Permethrin absorption not detected in single-pass perfused rabbit ear, and absorption with oxidationof 3-phenoxybenzyl alcohol. Arch Toxicol 71:179–186

    CAS  Google Scholar 

  • Baynes RE, Halling KB, Riviere JE (1997) The influence of Diethyl-m-toluamide (DEET) on the percutaneous absorption of permethrin and carbaryl. Toxicol Appl Pharmacol 144:332–339

    CAS  Google Scholar 

  • Berenson GS, Burch GE (1951) Studies of diffusion through dead human skin. Am J Trop Med Hyg 31:842–853

    CAS  Google Scholar 

  • Berezhkovskly LM (2004a) Determination of volume of distribution at steady state with complete consideration of the kinetics of protein and tissue binding in linear. J Pharm Sci 93:364–364

    Google Scholar 

  • Berezhkovskly LM (2004b) Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 93:1628–1640

    Google Scholar 

  • Berezhkovskly LM (2007) The connection between the steady state (Vss) and Terminal (Vβ) volumes of distribution in linear pharmacokinetics and the general proof that Vβ ≥ Vss. J Pharm Sci 96:1638–1650

    Google Scholar 

  • Bilsback MM, Parker CM, Wimberly HC (1984) Comparative oral toxicity of technical MO70616 and technical SD 42775 in rats. Study No. WRC-RIR 357.Corporation Study No. NCT584.01, Shell Development Company, Houston, TX.

    Google Scholar 

  • Blancato JN, Knaak JB, Power F (2000) Use of PBPK models for assessing absorbed dose and ChE inhibition from aggregate exposure of infants and children to organophosphorous insecticides. Presented at 10th Annual Meeting of the International Society of Exposure Analysis, Monterey, CA (Abstract 3F-09o)

    Google Scholar 

  • Bloomquist JR, Soderlund DM (1988) Pyrethroid insecticides and DDT modify alkaloid-dependent sodium channel activation and its enhancement by sea anemone toxin. Mol Pharmacol 33:543–550

    CAS  Google Scholar 

  • Boatman RJ, Knaak JB (2001) Ethers of ethylene glycol and derivatives. In: Bingham E, Cohrsson B, Powell CH (eds) Patty’s toxicology (5th ed). Wiley, NY, NY

    Google Scholar 

  • Bolger MB (2010) Simulations-Plus, Inc., Lancaster, CA. Memo to Kurt Enslein, Enslein Research, Rochester, NY.

    Google Scholar 

  • Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi J-S, Symington S, Clark JM, Burr S, Ray D (2009) Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 30(Suppl 1):S17–S31

    CAS  Google Scholar 

  • Bronaugh RL, Stewart RF, Congdon ER (1982) Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol 62:481–488

    CAS  Google Scholar 

  • Bronaugh RL, Stewart RF, Simon M (1986) Methods for in vitro percutaneous absorption studies. VII: use of excised human skin. J Pharm Sci 75:1094–1097

    CAS  Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    CAS  Google Scholar 

  • Burr SA, Ray DE (2004) Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci 77:341–346

    CAS  Google Scholar 

  • Cahn RS, Ingold CK, Prelog V (1966) Specification of chirality. Angew Chem Int Ed Engl 5:385–415

    CAS  Google Scholar 

  • Casida JE, Kimmel EC, Elliott M, Janes NF (1971a) Oxidative metabolism of pyrethrins in mammals. Nature 230:326–327

    CAS  Google Scholar 

  • Casida JE, Kimmel ED, Elliott M, Janes NF (1971b) Oxidative metabolism of pyrethrins in mammals. Pyrethrum Post 11:58–59

    CAS  Google Scholar 

  • Casida JE, Ueda K, Gaughan LC, Jao LT, Soderlund DM (1975) Structure-biodegradability relationships in pyrethroid insecticides. Arch Environ Contam Toxicol 3:491–500

    CAS  Google Scholar 

  • Cayley GR, Simpson BW (1986) Separation of pyrethroid enantiomers by chiral high-performance liquid chromatography. J Chromatogr A 356:123–134

    CAS  Google Scholar 

  • Chamberlain K, Matsuo N, Kaneko H, Khambay BPS (1998) Pyrethroids. In: Chirality in agrochemicals. Wiley, New York

    Google Scholar 

  • Chang JH, Benet LZ (2005) Glucuronidation and the transport of the glucuronide metabolites in LLC-PK1 cells. Mol Pharmacol 2:428–434

    CAS  Google Scholar 

  • Chang SK, Brooks JB, Monteiroriviere NA, Riviere JE (1995) Enhancing or blocking effect of fenvalerate on the subsequent percutaneous absorption of pesticides in vitro. Pestic Biochem Physiol 51:214–219

    CAS  Google Scholar 

  • Chang DT, Goldsmith M-R, Tornero-Velez L-J, Ulrich E, Lindstrom AB, Dary CC (2009) A novel application of QSAR and PH4 models for the elucidation of the stereoselective hydrolysis rates of pyrethroids by rat serum carboxylesterase. Society of Environmental Toxicology and Chemistry, New Orleans, LA, November 2009 meeting.

    Google Scholar 

  • Chemical Abstracts Service (2002) Chemical abstracts 2002 index guide, appendix IV, naming and indexing of chemical substances for chemical abstracts, E. Stereochemistry and stereoparents (paragraphs 202–212). Chemical Abstracts Service, Columbus, Ohio.

    Google Scholar 

  • Choi J-S, Soderlund DM (2006) Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes. Toxicol Appl Pharmacol 211:233–244

    CAS  Google Scholar 

  • Clark JM, Brooks MW (1989) Role of ion channels and intraterminal calcium homeostasis in the action of deltamethrin at presynaptic nerve terminals. Biochem Pharmacol 38:2233–2245

    CAS  Google Scholar 

  • Class TJ, Ando T, Casida JE (1990) Pyrethroid metabolism: microsomal oxidase metabolites of (S)-bioallethrin and the six natural pyrethrins. J Agric Food Chem 38:529–537

    CAS  Google Scholar 

  • Cole LM, Ruzo LO, Wood EJ, Casida JE (1982) Pyrethroid metabolism: comparative fate in rats of tralomethrin, tralocythrin, deltamethrin, and (1R, alphaS)-cis-cypermethrin. J Agric Food Chem 30:631–636

    CAS  Google Scholar 

  • Colmenarejo G (2003) In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23:275–301

    CAS  Google Scholar 

  • Colmenarejo G, Alverez-Pedraglio A, Lavandera J (2001) Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 44:4370–4378

    CAS  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    CAS  Google Scholar 

  • Crane AL, Browner RW, Knaak JB, Bonner MR, Fenske RA, Farahat FM, Anger WK, Lein PJ, Olson JR (2011) Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in human blood following in vitro and in vivo exposure to chlorpyrifos. Abstract No. 1243, 49th Annual Meeting and ToxExpo, Salt Lake City, Utah, March 7–11.

    Google Scholar 

  • Crawford MJ, Hutson DH (1977) The metabolism of the pyrethroid insecticide (±)-α-cyano-3-phenoxybenzyl 2, 2, 3, 3-tetramethylclyclopropanecarboxylate, WL 41706, in the rat. Pestic Sci 8:579–599

    CAS  Google Scholar 

  • Crawford MJ, Croucher A, Hutson DH (1981a) Metabolism of cis- and trans-cypermethrin in rats. Balance and tissue retention study. J Agric Food Chem 29:130–135

    CAS  Google Scholar 

  • Crawford MJ, Croucher A, Hutson DH (1981b) The metabolism of the pyrethroid insecticide cypermethrin in rats: excreted metabolites. Pestic Sci 12:399–411

    CAS  Google Scholar 

  • Crow JA, Borazjani A, Potter PM, Ross MK (2007) Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol Appl Pharmacol 221:1–12

    CAS  Google Scholar 

  • Culliford SJ, Borg JJ, O’Brien MJ, Kozlowski RZ (2004) Differential effects of pyrethroids on volume-sensitive anion and organic osmolyte pathways. Clin Exp Pharmacol Physiol 31:134–144

    CAS  Google Scholar 

  • Danker T, Mazzanti M, Tonini R, Rakowska A, Oberleithner H (1997) Using the atomic force microscopy to investigate patch-clamped nuclear membrane. Cell Biol Int 21:747–757

    CAS  Google Scholar 

  • Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res (NY) 10:1093–1095

    CAS  Google Scholar 

  • Delie F, Rubas W (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14:221–286

    CAS  Google Scholar 

  • L’Hoste J (ed) (1982) Deltamethrin monograph. Roussel-Uclaf, Paris

    Google Scholar 

  • Diel F, Detscher M, Schock B, Ennis M (1998) In vitro effects of the pyrethroid S-bioallethrin on lymphocytes and basophils from atopic and nonatopic subjects. Allergy 53:1052–1059

    CAS  Google Scholar 

  • Eadsforth CV, Baldwin MK (1983) Human dose-excretion studies with pyrethroid insecticide, cypermethrin. Xenobiotica 13:67–72

    CAS  Google Scholar 

  • Eadsforth CV, Bragt PC, Sittert NJ (1988) Human dose-excretion studies with pyrethroid insecticides: cypermethrin and alpha cypermethrin: relevance for biological monitoring. Xenobiotica 18:603–614

    CAS  Google Scholar 

  • EC-HCPDG (2002) European Commission, Health & Consumer Protection Directorate-General, Directorate E1: Plant Health. Beta-Cyfluthrin, Review Report # 6841/VI/97-final, 12-2-2002.

    Google Scholar 

  • Eells JT, Bandettini PA, Holman PA, Propp JM (1992) Pyrethroid insecticide-induced alterations in mammalian synaptic membrane-potential. J Pharmacol Exp Ther 262:1173–1181

    CAS  Google Scholar 

  • Eldefrawi ME, Sherby SM, Abalis IM, Eldefrawi AT (1985) Interactions of pyrethroid and cyclodiene insecticides with nicotinic acetylcholine and GABA receptors. Neurotoxicology 6:47–62

    CAS  Google Scholar 

  • Elflein L, Berger-Preiss E, Preiss A, Elend M, Levsen K, Wunsch G (2003) Human biomonitoring of pyrethroid insecticides used indoors: determination of the metabolites E-cis/trans-chrysanthemum dicarboxylic acid in human urine by gas chromatography-mass spectrometry with negative chemical ionizations. J Chromatogr B 795:195–207

    CAS  Google Scholar 

  • Elliott M (1989) The pyrethroids: early discovery, recent advances and the future. Pestic Sci 27:337–351

    CAS  Google Scholar 

  • Elliott M, Janes NF (1978) Synthetic pyrethroids: a new class of insecticide. Chem Soc Rev 7:473–505

    CAS  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Needham PH, Pearson BC (1967) 5-Benzyl-3-furylmethyl chrysanthemate a new potent insecticide. Nature (London) 213:493–494

    CAS  Google Scholar 

  • Elliott M, Janes NF, Kimmel EC, Casida JE (1972) Metabolic fate of pyrethrin I, pyrethrin II, and allethrin administered orally to rats. J Agric Food Chem 20:300–313

    CAS  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Needhan DH, Pulman DA (1974) Synthetic insecticides with a new order of activity. Nature (London) 248:710–711

    CAS  Google Scholar 

  • Elliott M, Janes NF, Pulman DA, Gaughan LC, Unai T, Casida JE (1976) Radiosynthesis and metabolism in rats of the 1R-isomers of the insecticide permethrin. J Agric Food Chem 24:270–276

    CAS  Google Scholar 

  • Elliott M, Janes NF, Potter C (1978) The future of pyrethroids in insect control. Ann Rev Entomol 23:443–469

    Google Scholar 

  • Ellison CA, Knaak, JB, McDougall R, Lein PJ, Farahat FM, Anger WK, Olson JR (2011) Construction and validation of a human PBPK/PD model for dermal chlorpyrifos exposure utilizing human biomarker data. Abstract No. 2106, 50th Annual Meeting and ToxExpos, Washington, DC, March 6–10.

    Google Scholar 

  • Enan E, Matsumura F (1993) Activation of phosphoinositide protein-kinase-c pathway in rat-brain tissue by pyrethroids. Biochem Pharmacol 45:703–710

    CAS  Google Scholar 

  • Enslein K (2010) ADMET predictor. Simulations-Plus, Lancaster, CA

    Google Scholar 

  • Enslein K, Gombar VK, Shapiro D, Blake BW (1998) Prediction of rat oral LD50 values of chemicals by QSAR equations. TOPKAT Health Designs, Rochester, NY

    Google Scholar 

  • Enslein K, Knaak JB, Van Nostrand K, Susa R, Koestler D (2007) CYP3A4 hydroxylation kinetics: QSAR models with application to PBPK modeling. J Comput Aided Mol Des. An internal document-Enslein Research, Inc., Rochester, NY. (submitted).

    Google Scholar 

  • Farahat FM, Ellison CA, Bonner MR, McGarrigle BP, Crane AL, Fenske RA, Lasarev MR, Rohlman DS, Anger WK, Lein PJ, Olson JR (2011) Biomarkers of chlorpyrifos exposure and effect in Egyptian cotton field workers. Environ Health Perspect 119:801–816

    CAS  Google Scholar 

  • Farahmand S, Maibach HI (2009) Estimating skin permeability from physicochemical characteristics of drugs: a comparison between conventional models and an in vivo-based approach. Int J Pharm 375:41–47

    CAS  Google Scholar 

  • Faraoni M, Messina A, Polcaro CM, Aturki Z, Sinibaldi M (2004) Chiral separation of pesticides by coupled-column liquid chromatography application to the stereoselective degradation of fenvalerate in soil. J Liq Chromatogr Rel Technol 27:995–1012

    CAS  Google Scholar 

  • Feldmann RJ, Maibach HI (1974) Percutaneous penetration of some pesticides and herbicides in man. Toxicol Appl Pharmacol 28:126–132

    CAS  Google Scholar 

  • Fisher JB, Debray PH, Robinson J (1983) In: Plant Protection for Human Welfare, Proc 10th Internat Congr Plant Prot Vol 1, BCPC, Croydon, UK, 1983, pp 452–459. FMC, U.S. Patent 4,262,921 (1981)

    Google Scholar 

  • Fleischer R (1877) Untersuchgen uber das resporptions-vermogen der menschlichen haut. Erlangen 1877. Habilitationsschrift p 81.

    Google Scholar 

  • Flynn GL (1990) Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ (eds) Principles of route-to-route extrapolation for risk assessment. Elsevier, New York, pp 93–127

    Google Scholar 

  • Foxenberg RJ, Knaak JB, McGarrigle BP, Kostyniak PJ, Olson JR (2007) Human hepatic cytochrome P450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos 35:189–193

    CAS  Google Scholar 

  • Foxenberg RJ, Ellison CA, Knaak JB, Ma C, Olson JR (2011) Cytochrome P450-specific human PBPK/PD models for the organophosphorus pesticides: chlorpyrifos and parathion. Toxicology 285:57–66

    CAS  Google Scholar 

  • Freeman C (1982) Acute oral toxicity study in rats: FMC 54800. Study No. A83-859, FMC Corporation, Philadelphi PA.

    Google Scholar 

  • Freeman C (1987) Acute oral toxicity study-FMC 45806 technical: Study No. A87-2282, FMC Corporation, Philadelphia, PA.

    Google Scholar 

  • Freeman C (1989) Acute oral toxicity of FMC 56701 technical in rats. Study No. A89-2914, FMC Corporation, Philadelphia, PA.

    Google Scholar 

  • Fujikawa M, Nakao K, Shimizu R, Akamatsu M (2007) QSAR study on permeability of hydrophobic compounds with artificial membranes. Bioorg Med Chem 15:3756–3767

    CAS  Google Scholar 

  • Fujimoto K, Itaya N, Okuno Y, Kadota T, Yamaguchi T (1973) A new insecticidal pyrethroid ester. Agric Biol Chem 37:2681–2682

    CAS  Google Scholar 

  • Furnax R, Audegond L (1985a) Bioallethrin (synthetic) acute oral toxicity in rat. Study No. 84324/5635/5637, Roussel-Uclaf, Paris.

    Google Scholar 

  • Furnax R, Audegond L (1985b) RU 16121 acute oral toxicity in rat. Study No. 84327/5640/5641, Roussel-Uclaf, Paris.

    Google Scholar 

  • Gabriel D (1992) Acute oral toxicity study in rats. Study No. 92-7529A, Pyrethrin Joint Venture Chemical Specialties Manufacturing Association, Washington, DC.

    Google Scholar 

  • Gao R, Zhu L, Chen Z (1998) Separation of pyrethroid enantiomers of fenpropathrin and fluvalinate by chiral high performance liquid chromatography. Nongyao (Pesticides) 37(9):22–24

    CAS  Google Scholar 

  • Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME (1989) Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 98:87–99

    CAS  Google Scholar 

  • Gassner B, Wuthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    CAS  Google Scholar 

  • GastroPlus Users Manual (2008) version 6.0, Simulations-Plus, Inc., Lancaster, CA

    Google Scholar 

  • Gaughan LC, Unai T, Casida JE (1977) Permethrin metabolism in rats. J Agric Food Chem 25:9–17

    CAS  Google Scholar 

  • Geinoz S, Guy RH, Testa B, Carrupt PA (2004) Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation. Pharm Res 21:83–92

    CAS  Google Scholar 

  • Ghiasuddin SM, Soderlund DM (1985) Pyrethroid insecticides potent, stereospecific enhancers of mouse brain sodium channel activation. Pestic Biochem Physiol 24:200–206

    CAS  Google Scholar 

  • Girelli AM, Messina A, Sinibaldi M (2002) A study on the separation of synthetic pyrethroid stereoisomers by HPLC. Ann Chim 92:417–424

    CAS  Google Scholar 

  • Glomot R (1979) RU 25474, active material: acute oral toxicity study in the rat. American Hoechst Corporation Study No. RU-4BE-79818-19/A.

    Google Scholar 

  • Godin SJ, Scollon EJ, Hughes MF, Potter PM, DeVito MJ, Ross MK (2006) Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos 34:1764–1771

    CAS  Google Scholar 

  • Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, Ross MK (2007) Identification of rat and human cytochrome P450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides Deltamethrin and Esfenvalerate. Drug Metab Dispos 35:1664–1671

    CAS  Google Scholar 

  • Godin SJ, DeVito MJ, Hughes MF, Ross DG, Scollon EJ, Starr JM, Setzer RW, Conolly RB, Tornero-Velez R (2010) Physiologically based pharmacokinetic modeling of deltamethrin: development of a rat and human diffusion-limited model. Toxicol Sci 115:330–343

    CAS  Google Scholar 

  • Goksu EI, Vanegas JM, Blanchette CD, Lin W-C, Longo ML (2009) AFM for structure and dynamics of biomembranes. Biochem Biophys Acta 1788:254–266

    CAS  Google Scholar 

  • Goodman LS (2001) Goodman & Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York

    Google Scholar 

  • Gray AJ, Soderlund DM (1985) Mammalian toxicology of pyrethroids. In: Hutson DH, Roberts TR (eds) Insecticides. Wiley, New York, pp 193–248

    Google Scholar 

  • Grosman N, Diel F (2005) Influence of pyrethroids and piperonyl butoxide on the Ca+2 –ATPase activity. Int J Immunopharmacol 5:263–270

    CAS  Google Scholar 

  • Guengerich FP, Martin MV (1998) Purification of cytochromes P450. Rat and human hepatic forms. Methods Mol Biol 107:35–53

    CAS  Google Scholar 

  • Guy RH, Hadgraft J, Bucks DA (1987) Transdermal drug delivery and cutaneous metabolism. Xenobiotica 17:325–343

    CAS  Google Scholar 

  • Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

    CAS  Google Scholar 

  • Hallifax D, Houston JB (2006) Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos 34:724–726

    CAS  Google Scholar 

  • Hamman I, Fuchs R (1981) Baythroid®, a new insecticide. Pflanzenschutz-Nachrichten Bayer 34:121–151

    Google Scholar 

  • Hansch C, Hoekman D, Leo A, Zhang L, Li P (1995) The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol Lett 79:45–43

    CAS  Google Scholar 

  • Hardt J, Angerer J (2003) Biological monitoring of workers after the application of insecticidal pyrethroids. Int Arch Occup Environ Health 76:492–498

    CAS  Google Scholar 

  • Harrison SM, Barry BW, Dugard PH (1984) Effects of freezing on human-skin permeability. J Pharm Pharmacol 36:261–262

    CAS  Google Scholar 

  • Heimann KG (1987) FCR 1272 (c.n. cyfluthrin): Study for acute oral toxicity to rats (formulation acetone and peanut oil). Bayer Corporation Agricultural Division Report No. 106805.

    Google Scholar 

  • Hemming H, Flodstrom S, Warngard L (1993) Enhancement of altered hepatic foci in rat-liver and inhibition of intercellular communication in-vitro by the pyrethroid insecticides fenvalerate, flucythrinate and cypermethrin. Carcinogenesis 14:2531–2535

    CAS  Google Scholar 

  • Henrick CA (1977) Zoecon Corp. (patent for fluvalinate development).

    Google Scholar 

  • Henrick CA, Garcia BA, Staal GB, Cerf DC, Anderson RJ, Gill K, Chinn HR, Labovitz JN, Leippe MM, Woo SL, Carney RL, Gordon DC, Kohn GK (1980) 2-Anilino-3-methylbutyrates and 2-(isoindolin-2-yl)-3-methylbutyrates, two novel groups of synthetic pyrethroid esters not containing a cyclopropane ring. Pestic Sci 11(2):224–241

    CAS  Google Scholar 

  • Hildebrand ME, McRory JE, Snutch TP, Stea A (2004) Mammalian voltage-gated calcium channels are potently blocked by the pyrethroid insecticide allethrin. J Pharmacol Exp Ther 308:805–813

    CAS  Google Scholar 

  • Hood SR, Shah G, Jones P (1998) Ch 24, Expression of cytochromes P450 in a Baculovirus system. In: Phillips IR, Shepard EA (eds) Methods in molecular biology: CYP protocols. Humana, Totowa, NJ, pp 203–218

    Google Scholar 

  • Horber JKH, Mosbacher J, Haberle W, Ruppersberg JP, Sakmann B (1995) A look at membrane patches with a scanning force microscope. Biophys J 68:1687–1693

    CAS  Google Scholar 

  • Hosokawa M, Maki T, Satoh T (1987) Muliplicity and regulation of hepatic microsomal carboxylesterases in rats. Mol Pharmacol 31:579–584

    CAS  Google Scholar 

  • Hosokawa M, Maki T, Satoh T (1990) Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans. Arch Biophys 277:219–227

    CAS  Google Scholar 

  • Hotchkiss SAM, Miller JM, Caldwell J (1992) Percutaneous absorption of benzyl acetate through rat skin in vitro. 2. Effect of vehicle and occlusion. Food Chem Toxicol 30:145–153

    CAS  Google Scholar 

  • Houston JB (1994) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47:1469–1479

    CAS  Google Scholar 

  • Huang T, Kuang C, Zhou J, Gou D (1991) Chiral separation of water soluble. BETA-Lactam Enanatiomers on BETA-Cyclodextrin bonded stationary phase. Fenxi Huaxue 16:687–689

    Google Scholar 

  • Huckle KR, Chipman JK, Hutson DH, Miliburn P (1981a) Metabolism of 3-phenoxybenzoic acid and the enterohepatorenal disposition of its metabolites in the rat. Drug Metab Dispos 9:360–368

    CAS  Google Scholar 

  • Huckle KR, Hutson DH, Millburn P (1981b) Species differences in the metabolism of 3-phenoxybenzoic acid. Drug Metab Dispos 9:352–359

    CAS  Google Scholar 

  • Huckle KR, Hutson DH, Millburn P (1984) Metabolism of 3-phenoxybenzoic acid in isolated rat hepatocytes and renal tubule fragments. Drug Metab Dispos 12:264–265

    CAS  Google Scholar 

  • Huff RK (1978) Halogenated esters of cyclopropane acids, their preparation, composition and use as pesticides. Eur Pat 0010879 ICI.

    Google Scholar 

  • Hutson DH, Logan CJ (1986) The metabolic fate in rats of the pyrethroid insecticide WL85871, a mixture of two isomers of cypermethrin. Pestic Sci 17:548–558

    CAS  Google Scholar 

  • IARC (1991) Occupational exposures in insecticide application and some pesticides. IARC, Lyon

    Google Scholar 

  • Inoue S, Howgate EM, Rowland-Yeo K, Shimada T, Yamazaki H, Tucker GT, Rostami-Hodjegan A (2006) Prediction of in vivo drug clearance from in vitro data. II: Potential inter-ethnic differences. Xenobiotica 36:499–513

    CAS  Google Scholar 

  • Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin-Darby Canine Kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33

    CAS  Google Scholar 

  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, Chiba K, Ishizaki T, Green CE, Tyson CA, Sugiyama Y (1997) Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 73:147–171

    CAS  Google Scholar 

  • Izumi T, Kaneko H, Matsuo M, Miyamoto J (1984) Comparative metabolism of the six stereoisomers of phenothrin in rats and mice. J Pestic Sci 9:259–267

    CAS  Google Scholar 

  • Jarabek A (2002) External Review Draft NCEA-1-0503, Office of Research and Development. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Jepson GW, Hoover DK, Black RK, McCafferty JD, Mahle DA, Gearhart JM (1992) Partition coefficient determination for nonvolatile and intermediate volatility chemicals in biological tissues. Toxicology 12:262

    Google Scholar 

  • Jepson GW, Hoover DK, Black RK, McCafferty JD, Mahle DA, Gearhart JM (1994) A partition coefficient determination methods for non-volatile chemicals in biological issues. Fundam Appl Toxicol 22:519–524

    CAS  Google Scholar 

  • Johnson PL (2007) Synthesis of (S)-cyano (3-phenoxyphenyl) methyl (1R, 3R)-3-[(1Z)-2-chloro-3, 3, 3-trifluoro-1-propenyl)-2, 2-dimethylcyclopropanecarboxylate-1-14C. J Label Compd Radiopharm 50:47–53

    CAS  Google Scholar 

  • Jutsum AR, Gordon RF, Ruscoe CNE (1986) In: Proc. 1986 Brit Crop Prot Conf Pests and Diseases, BCPC, Croydon, pp 97–106.

    Google Scholar 

  • Kakko I, Toimela T, Tahti H (2003) The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere 51:475–480

    CAS  Google Scholar 

  • Kaneko H (2010) Chapter 76, Pyrethroid chemistry and metabolism. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  • Kaneko H, Miyamoto J (2001) Pyrethroid chemistry and metabolism, chapter 58. In: Krieger R (ed) Hayes handbook of pesticide toxicology, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Kaneko H, Ohkawa H, Miyamoto J (1981a) Adsorption and metabolism of dermally applied phenothrin in rats. Nippon Noyaku Gakkaishi 6:169–182

    CAS  Google Scholar 

  • Kaneko H, Ohkawa H, Miyamoto J (1981b) Comparative metabolism of fenvalerate and the [2S, αS]-isomer in rats and mice. Nippon Noyaku Gakkaishi 6:317–326

    CAS  Google Scholar 

  • Kaneko H, Ohkawa H, Miyamoto J (1981c) Metabolism of tetramethrin isomers in rats. Nippon Noyaku Gakkaishi 6:425–435

    CAS  Google Scholar 

  • Kaneko H, Matsuo M, Miyamoto J (1984) Comparative metabolism of stereoisomers of cyphenothrin and phenothrin isomers in rats. Nippon Noyaku Gakkaishi 9:237–247

    CAS  Google Scholar 

  • Kaneko H, Shiba K, Yoshitake A, Miyamoto J (1987) Metabolism of fenpropathrin (S-3206) in rats. Nippon Noyaku Gakkaishi 12:385–395

    CAS  Google Scholar 

  • Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007–1010

    CAS  Google Scholar 

  • Kato T, Ueda K, Fujimoto K (1965) New insecticidally active chrysanthemate. Agric Biol Chem 28:914–915

    Google Scholar 

  • Katsuda Y (1975) Sumitomo Chemical Co, LTD. (patent for fluvalinate development).

    Google Scholar 

  • Katsuda Y (1999) Development of and future prospects for pyrethroid chemistry. Pestic Sci 55:775–782

    CAS  Google Scholar 

  • Khambay BPS (2002) Pyrethroid insecticides. Royal Society of Chemistry (UK). Pestic Outlook 49–54.

    Google Scholar 

  • Killeen JCJ (1975) Acute oral toxicity study in rats with FMC 33297. FMC Corp, Philadelphia, PA

    Google Scholar 

  • Klopman G, Rosenkranz HS (1995) Toxicity estimation by chemical substructure analysis: the TOX II program. Toxicol Lett 79:145–155

    CAS  Google Scholar 

  • Knaak JB, Iwata Y, Maddy KT (1989) The worker hazard posed by reentry into pesticide-treated foliage: development of safe reentry times, with emphasis on chlorthiophos and carbosulfan, Ch 24. In: Paustenbach D (ed) The risk assessment of environmental hazards: a textbook of case studies. Wiley, New York, pp 797–842

    Google Scholar 

  • Knaak JB, Wagner B, Boutchyard H Jr, Smith LW, Jones T, Wang RH (1993) Computerization of toxicological data by government agencies, chemical, and information industries, Ch 19. In: Jolley RL, Wang RGM (eds) Effective and safe waste management; interfacing sciences and engineering with monitoring and risk analysis. Lewis, Boca Raton, FL, pp 227–264

    Google Scholar 

  • Knaak JB, Leung H-W, Stott WT, Busch J, Bilsky J (1997) Toxicology of mono-, di-, and triethanolamine. Rev Environ Contam Toxicol 149:1–86

    CAS  Google Scholar 

  • Knaak JB, Dary C, Patterson GT, Blancato J (2002) The worker hazard posed by reentry into pesticide-treated foliage: reassessment of reentry levels/intervals using foliar residue transfer-percutaneous absorption PBPK/PD models, with emphasis on isofenphos and parathion. In: Paustenbach D (ed) Human and ecological risk assessment: theory and practice. Wiley, New York, pp 673–731

    Google Scholar 

  • Knaak JB, Dary CC, Power F, Thompson CB, Blancato JN (2004) Physicochemical and biological data for the development of predictive organophosphorus pesticides QSARs and PBPK/PD models for human risk assessment. Crit Rev Toxicol 34:143–207

    CAS  Google Scholar 

  • Knaak JB, Dary CC, Okino MS, Power FW, Zhang X, Thompson CB, Tornero-Velez R, Blancato JN (2008) Parameters for carbamate pesticide QSAR and PBPK/PD models for human risk assessment. Rev Environ Contam Toxicol 193:53–212

    CAS  Google Scholar 

  • Kuo JK (1985) Phospholipids and cellular regulation. CRC, Boca Raton, FL

    Google Scholar 

  • Kurihara N, Miyamoto J, Paulson GD, Zeeh B, Skidmore MW, Hollingsworth RM, Kuiper HA (1997a) Chirality in synthetic agrochemicals: bioactivity and safety considerations. Pure Appl Chem 69:1335–1348

    CAS  Google Scholar 

  • Kurihara N, Miyamoto J, Paulson GD, Zeeh B, Skidmore MW, Hollingsworth RM, Kipper HA (1997b) Chirality in synthetic agrochemicals: bioactivity and safety consideration. Pure Appl Chem 69:2007–2026

    CAS  Google Scholar 

  • Kutter JP, Class TJ (1992) Diastereoselective and enantioselective chromatography of the pyrethroid insecticides allethrin and cypermethrin. Chromatograhia 33:103–112

    CAS  Google Scholar 

  • LaForge FB, Haller HL (1936) Constituents of pyrethrum flowers. VI. The structure of pyrethrolone. J Am Chem Soc 58:1777–1780

    CAS  Google Scholar 

  • LaForge FB, Soloway SB (1947) Structure of dihydrocinerolone. J Am Chem Soc 69:186

    CAS  Google Scholar 

  • Lau YY, Wu C-Y, Okochi H, Benet LZ (2003) Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 308:1040–1045

    Google Scholar 

  • Lawrence LJ, Gee KW, Yamamura HI (1985) Interactions of pyrethroid insecticides with chloride ionophore-associated binding sites. Neurotoxicology 6:87–98

    CAS  Google Scholar 

  • Lee W, Kim B-H (1998) Liquid chromatographic resolution of pyrethroic acids and their esters on chiral stationary phases. J High Resol Chromatogr 21:189–192

    CAS  Google Scholar 

  • Leng G, Leng A, Kuhn K-H, Lewalter J, Pauluhn J (1997) Human dose-excretion studies with the pyrethroid insecticide cyfluthrin: urinary metabolite profile following inhalation. Xenobiotica 27:1273–1293

    CAS  Google Scholar 

  • Li Z-Y, Zhang Z-C, Zhou Q-L, Wang Q-M, Gao R-Y, Wang Q-S (2003) Stereo and enantioselective determination of pesticides in soil by using achiral and chiral liquid chromatography in combination with matrix solid-phase dispersion. J AOAC Int 86(3):521–528

    CAS  Google Scholar 

  • Li Z-Y, Zhang Z-C, Zhang L, Leng L (2006) Chiral separation of pyrethroids pesticides and fenvaleric acid. Fenxi Shiyanshi (Chin J Anal Lab) 25(11):11–14

    Google Scholar 

  • Li Z, Zhang Z, Zhang L, Leng L (2009) Isomer- and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere 76:509–516

    Google Scholar 

  • Liang R, Fei Y-J, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH (1995) Human intestinal H+/peptide cotransporter: cloning, functional expression, and chromosomal localization. J Biol Chem 270:6456–6463

    CAS  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    CAS  Google Scholar 

  • Lipscomb JC, Fisher JW, Confer PD, Byczkowski JZ (1998) In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol Appl Pharmacol 152:376–387

    CAS  Google Scholar 

  • Liu HX, Yao XJ, Zhang RS, Liu MC, Hu ZD, Fan BT (2005a) Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines. J Comput Aided Mol Des 19:499–508

    CAS  Google Scholar 

  • Liu W, Gan J, Schlenk D, Jury WA (2005b) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA 102(3):701–706

    CAS  Google Scholar 

  • Liu W, Gan JJ, Qin S (2005c) Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality 17:S127–S133

    CAS  Google Scholar 

  • Liu W, Gan J, Lee S, Werner I (2005d) Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environ Toxicol Chem 24(8):1861–1866

    CAS  Google Scholar 

  • Lu AYH, West SB (1980) Multiplicity of mammalian microsomal cytochrome P450. Pharmacol Rev 31:277–291

    Google Scholar 

  • Maibach HI, Feldmann RJ, Milby TH, Serat WF (1971) Regional variation in percutaneous penetration in man. Arch Environ Health 23:208–211

    CAS  Google Scholar 

  • Mancini F, Fiori J, Bertucci C, Cavrini V, Bragieri M, Zanotti MC, Liverani A, Borzatta V, Andrisano V (2004) Stereoselective determination of allethrin by two-dimensional achiral/chiral liquid chromatography with ultraviolet/circular dichroism detection. J Chromatogr A 1046:67–73

    CAS  Google Scholar 

  • Martel J (1976) Roussel UCLAF (patent, tralomethrin development).

    Google Scholar 

  • Matsuo T, Itaya N, Mizutani T, Ohno N, Fujimoto K, Okuno Y, Yoshioka H (1976) 3-phenoxy-a-cyanobenzyl esters, the most potent synthetic pyrethroids. Agric Biol Chem 40:247–249

    CAS  Google Scholar 

  • Mattie DR, Bates GD, Jepson GW, Fisher JW, McDougal JN (1994) Determination of skin: air partition coefficients for volatile chemicals: experimental method and applications. Toxicol Appl Pharmacol 22:51–57

    CAS  Google Scholar 

  • McGregor DB (1999) Permethrin Joint Meeting, FAO Panel of Experts on Pesticide Residues in Food and the Environment, and WHO Core Assessment Group, Rome.

    Google Scholar 

  • Meylan WM, Howard PH (1994a) Upgrade of PCGEMS water solubility estimation method (draft). US Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC

    Google Scholar 

  • Meylan WM, Howard PH (1994b) Validation of water solubility estimation methods using log Kow for application in PCGEMS & EPI. Final report, U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC.

    Google Scholar 

  • Mirfazaelian A, Kim K-B, Anand SS, Kim HJ, Tornero-Velez R, Bruckner JV, Fisher JW (2006) Development of a physiologically based pharmacokinetic model for deltamethrin in the adult male Sprague-Dawley rat. Toxicol Sci 93:432–442

    CAS  Google Scholar 

  • Miyamoto J (1976) Degradation, metabolism and toxicity of synthetic pyrethroids. Environ Health Perspect 14:15–28

    CAS  Google Scholar 

  • Miyamoto J, Nishida T, Ueda K (1971) Metabolic fate of resmethrin, 5-benzyl-3-furylmethyl dl-trans chrysanthemate in the rat. Pestic Biochem Physiol 1:293–306

    CAS  Google Scholar 

  • Miyamoto J, Suzuki T, Nakae C (1974) Metabolism of phenothrin (3-phenoxybenzyl d-trans-chrysanthemumate) in mammals. Pestic Biochem Physiol 4:438–450

    CAS  Google Scholar 

  • Moss GP, Derden JC, Patel H, Cronin MT (2002) Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol In Vitro 16:299–317

    CAS  Google Scholar 

  • Mugeng J, Soderlund DM (1982) Liquid chromatographic determination and resolution of the enantiomers of the acid moieties of pyrethroid insecticides as their (-)-1-(1-phenyl)ethylamide derivatives. J Chromatogr A 248(1):143–149

    Google Scholar 

  • Myer JR (1989) Acute oral toxicity study of deltamethrin in rats. Hoechst-Roussel Agri-Vet Company Study No. 327-122.

    Google Scholar 

  • Nakamura Y, Sugihara K, Sone T, Isobe M, Ohta S, Kitamura S (2007) The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats. Toxicology 235:176–184

    CAS  Google Scholar 

  • Narahashi T (1971) Mode of action of pyrethroids. Bull World Health Organ 44:337–345

    CAS  Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    CAS  Google Scholar 

  • Naumann K (1998) Research into fluorinated pyrethroid alcohols-an episode in the history of pyrethroid discovery. Pestic Sci 52:3–20

    CAS  Google Scholar 

  • Nicoli S, Santi P (2007) Suitability of excised rabbit ear skin – fresh and frozen – for evaluation Transdermal permeation of estradiol. Drug Deliv 14:195–199

    CAS  Google Scholar 

  • Nigg HN, Knaak JB (2000) Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Rev Environ Contam Toxicol 163:29–112

    CAS  Google Scholar 

  • Nikolelis DP, Brennan JD, Brown S, McGibbon G, Krull UJ (1991) Ion permeability through bilayer lipid membranes for biosensor development: control by chemical modification of interfacial regions between phase domains. Analyst 116:1221–1226

    CAS  Google Scholar 

  • Nishizawa Y (1971) Development of new synthetic pyrethroids. Bull World Health Organ 44:325–336

    CAS  Google Scholar 

  • Nong A, Tan Y-M, Krolski ME, Wang J, Lunchick C, Conolly RB, Clewell HJ III (2008) Bayesian calibration of a physiologically-based pharmacokinetic/pharmacodynamic model of carbaryl cholinesterase inhibition. J Toxicol Environ Health A 71:1363–1381

    CAS  Google Scholar 

  • O’Reilly AO, Khanbay BPS, Williamson MS, Field LM, Wallace BS, Davies TGE (2006) Modeling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 396:255–263

    Google Scholar 

  • Obach RS (1996) The importance of nonspecific binding in in vitro matrices, its impact on enzyme kinetic studies of drug metabolism and implications for in vitro-in vivo correlations. Drug Metab Dispos 24:1047–1049

    CAS  Google Scholar 

  • Obach RS (1997) Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab Dispos 25:1359–1369

    CAS  Google Scholar 

  • Obach RS (1999) The prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of the in vitro half-life approach and non-specific binding to microsomes. Drug Metab Dispos 27:1350–1359

    CAS  Google Scholar 

  • Ohkawa H, Kaneko H, Tsuji H, Miyamoto J (1979) Metabolism of fenvalerate (Sumicidin) in rats. J Pestic Sci (J Nippon Noyaku Gakkaishi) 4:143–155

    CAS  Google Scholar 

  • Ohno N, Fujimoto K, Okuno Y, Mizutani T, Hirano M, Yoshioka H (1974) A new class of pyrethroidal insecticides: α-substituted phenylacetic acid esters. Agric Biol Chem 38:881–883

    CAS  Google Scholar 

  • Oi N (2005) Development of practical chiral stationary phases for chromatography and their applications. Chromatography 26(1):1–5

    CAS  Google Scholar 

  • Oi N, Horiba M, Kitahara H (1981) Gas chromatographic separation of optical isomers of chrysanthemic acid on an optically active stationary phase. Agric Biol Chem 45(6):1509–1510

    CAS  Google Scholar 

  • Oi N, Kitahara H, Kira R (1990) Enantiomer separation of pyrethroid insecticides by high-performance liquid chromatography with chiral stationary phases. J Chromatogr A 515:441–450

    CAS  Google Scholar 

  • Oi N, Kitahara H, Aoki F, Kisu N (1995) Direct separation of carboxylic acid enantiomers by high-performance liquid chromatography with amide and urea derivatives bonded to silica gel as chiral stationary phases. J Chromatogr A 689(2):195–201

    CAS  Google Scholar 

  • Oi N, Kitahara H, Matsushita Y, Kisu N (1996) Enantiomer separation by gas and high-performance liquid chromatography with tripeptide derivatives as chiral stationary phases. J Chromatogr A 722(1–2):229–232

    CAS  Google Scholar 

  • Omura T, Sato (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  Google Scholar 

  • Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KOL, Cl M, Perkins JD, Thummel KE (1997) Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 283:1552–1562

    CAS  Google Scholar 

  • Papadopoulou-Mourkidou E (1985) Direct analysis of fenvalerate isomers by liquid chromatography. Application to formulation and residue analysis of fenvalerate. Chromatographia 20(6):376–378

    CAS  Google Scholar 

  • Payne MP, Kenny LC (2002) Comparison of models for the estimation of biological partition coefficients. J Toxicol Environ Health A 65:897–931

    CAS  Google Scholar 

  • PMRA (Canada Pest Management Regulatory Agency) (2005) Report PRDD#2005-02 (imiprothrin), www.pmra-arla.gc.ca/english/pdf/prdd/prdd2005-02-e.pdf, Aug 8 2005.

  • Plummer EL, Cardis AB, Martinez AJ, Van Saun WA, Palmere RM, Pincus DS, Stewart RR (1983) Pyrethroid insecticides derived from substituted biphenyl-3-methods. Pestic Sci 14:560–570

    CAS  Google Scholar 

  • Porcelli C, Roncaglioni A, Chana A, Boriani E, Benfenati A (2007) A protocol for quantitative structure, activity relationship (QSAR) for regulatory purposes: the example of DEMETRA. In Environmental fate and ecological effects of pesticides, symposium pesticide chemistry, 13th, Placenza, Italy, Sept. 3–6, 2007, pp 669–674.

    Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    CAS  Google Scholar 

  • Potts RO, Guy RH (1995) A predictive algorithm for skin permeability: the effects of molecular size and hydrogen bond activity. Pharm Res 12:1628–1633

    CAS  Google Scholar 

  • Poulin P, Theil F-P (2000) A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89:16–35

    CAS  Google Scholar 

  • Poulin P, Theil F-P (2002a) Prediction of pharmacokinetics prior to in vivo studies. I. Mechanism-based prediction of volume of distribution. J Pharm Sci 91:129–156

    CAS  Google Scholar 

  • Poulin P, Theil F-P (2002b) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically-based pharmacokinetic models of drug disposition. J Pharm Sci 91:1358–1370

    CAS  Google Scholar 

  • Prout M, Howard E (1985b) PP993: excretion and tissue distribution of a single oral dose (10 mg/kg) in the rat. Syngenta unpublished report, no. CTL/P/1256, UK.

    Google Scholar 

  • Prout M, Howard E, Soames A (1985a) PP993: Absorption, excretion and tissue distribution of a single oral dose (1 mg/kg) in the rat. Syngenta unpublished report, no. CTL/P/1064, UK.

    Google Scholar 

  • Prout M, Gibson N, Howard E (1986) PP993: Biotransformation in the rat. Syngenta unpublished report, no. CTL/P/1295, UK.

    Google Scholar 

  • Casida JE (ed) (1973) Pyrethrum: the natural insecticide. Academic, New York

    Google Scholar 

  • Quistad GB, Staiger LE, Jamieson GC, Schooley DA (1983) Fluvalinate metabolism by rats. J Agric Food Chem 31:589–596

    CAS  Google Scholar 

  • Rand G (1983) Acute oral toxicity-cypermethrin technical. FMC Corporation Study No. A82-727.

    Google Scholar 

  • Rao RN, Shankaraiah B, Sunder MS (2004) Separation and determination of diastereomers of γ-Cyhalothrin by normal phase-liquid chromatography using a CN column. Anal Sci 20:1745–1748

    CAS  Google Scholar 

  • Ray DE, Fry JR (2006) A reassessment of the neurotoxicity of pyrethroids insecticides. Pharmacol Ther 111:174–193

    CAS  Google Scholar 

  • Ray DE, Sutharsan S, Forshaw PJ (1997) Actions of pyrethroid insecticides on voltage-gated chloride channels in neuroblastoma cells. Neurotoxicology 18:755–760

    CAS  Google Scholar 

  • Reifenrath WG, Kamppainen BW (1991) Skin storage conditions. In: Bronaugh R, Maibach H (eds) In vitro percutaneous absorption: principles, fundamentals and applications. CRC, Boca Raton, pp 115–125

    Google Scholar 

  • Reifenrath WG, Ross JH, Driver JH (2011) Experimental methods for determining permethrin dermal absorption. Submitted for review and publication. J Toxicol Environ Health A 74: 325–335.

    Google Scholar 

  • Rekling JC, Theophilidis GN (1995) Effects of the pyrethroid insecticide, deltamethrin, on respiratory modulated hypoglossal moto-neurons in a brain stem slice from newborn mice. Neurosci Lett 198:189–192

    CAS  Google Scholar 

  • Riddles PW, Richards LJ, Bowles MR, Pond SM (1991) Cloning and analysis of a cDNA encoding a human liver carboxylesterase. Gene (Amst) 108:389–392

    Google Scholar 

  • Riviere JE, Monteiro-Riviere NA (1991) The isolated perfused porcine skin flap as an in vitro model for percutaneous absorption and cutaneous toxicology. Crit Rev Toxicol 21:329–344

    CAS  Google Scholar 

  • Riviere JE, Bowman KF, Monteiro-Riviere NA, Dix LP, Carver MP (1986) The isolated perfused porcine skin flap (IPPSF). I. A novel in vitro model for percutaneous absorption and cutaneous toxicology studies. Fund Appl Toxicol 7:444–453

    CAS  Google Scholar 

  • Robey RW, Lin B, Qui J, Chan LL, Bates SE (2010) Rapid detection of ABC transporter interaction: potential utility in pharmacology. J Pharmacol Toxicol Methods 63:217–222

    Google Scholar 

  • Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutral and zwitterions. J Pharm Sci 95:1238–1257

    CAS  Google Scholar 

  • Rodgers T, Rowland M (2007) Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res 24:918–933

    CAS  Google Scholar 

  • Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94:1259–1276

    CAS  Google Scholar 

  • Rodgers T, Leahy D, Rowland M (2007) (ERRATA) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate to strong bases. J Pharm Sci 96:1259–1276, J Pharm Sci 96: 3151–3152

    Google Scholar 

  • Rodrigues AD (1999) Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochrome P450 and native human liver microsomes. Biochem Pharmacol 57:465–480

    CAS  Google Scholar 

  • Ross MK, Borazjani A, Edwards CC, Potter PM (2006) Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 71:657–669

    CAS  Google Scholar 

  • Ruzo LO, Casida JE (1977) Metabolism and toxicology of pyrethroids with dihalovinyl substituents. Environ Health Perspect 21:285–292

    CAS  Google Scholar 

  • Ruzo LO, Casida JE (1981) Pyrethroid photochemistry: (S)-a-cyano-3-phenoxybenzyl cis-(1R,3R,1′R or S)-3-(1′,2′-dibromo-2′,2′-dihaloethyl)-2,2-dimethylcyclopropanecarboxylates. J Agric Food Chem 29:702–706

    CAS  Google Scholar 

  • Ruzo LO, Unai T, Casida JE (1978) Decamethrin metabolism in rats. J Agric Food Chem 26:918–925

    CAS  Google Scholar 

  • Ruzo LO, Engel JL, Casida JE (1979) Decamethrin metabolites from oxidative, hydrolytic, and conjugative reactions in mice. J Agric Food Chem 27:725–731

    CAS  Google Scholar 

  • Saiakhov RD, Stefan LR, Klopman G (2000) Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs. Perspect Drug Discov Des 19:133–155

    CAS  Google Scholar 

  • Sanchez FG, Diaz AN, Pareja AG (1996) Enantiomeric resolution of pyrethroids by high-performance liquid chromatography with diode-laser polarimetric detection. J Chromatogr A 754:97–102

    CAS  Google Scholar 

  • Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288

    CAS  Google Scholar 

  • Satoh T, Hosokawa M (2010) Carboxylesterases: structure, function and polymorphism in mammals. J Pestic Sci 35:218–228

    CAS  Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51:702–747

    CAS  Google Scholar 

  • Schwenkenbecker A (1904) Das absorptions verniogen der haut. Arch Anat Physiol 121–165.

    Google Scholar 

  • Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, Schmitz G (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 233:117–120

    CAS  Google Scholar 

  • Scollon EJ, Starr JM, Godin SJ, DeVitro MJ, Hughes MF (2009) In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms. DMD 37:221–228

    CAS  Google Scholar 

  • Scott RC, Ramsay JD (1987) Comparison of the in vivo and in vitro percutaneous absorption of a lipophilic molecule (cypermethrin, a pyrethroid insecticide). J Invest Dermatol 89:142–146

    CAS  Google Scholar 

  • Serat WF (1973) Calculation of a safe reentry time into an orchard treated with a pesticide chemical which produces a measurable physiological response. Arch Environ Contam Toxicol 1:170–181

    CAS  Google Scholar 

  • Serat WF, Bailey JB (1974) Estimating the relative toxicologic potential of each pesticide in mixture of residues on foliage. Bull Environ Contam Toxicol 12:682–686

    CAS  Google Scholar 

  • Serat WF, Mengle DC, Anderson HP, Kahn E (1975) On the estimation of worker entry intervals into pesticide treated fields with and without the exposure of human subjects. Bull Environ Contam Toxicol 13:506–512

    CAS  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113:123–135

    CAS  Google Scholar 

  • Sidon EW, Moody RP, Franklin CA (1988) Percutaneous absorption of cis- and trans-permethrin in rhesus monkeys and rats: Anatomic site and interspecies variation. J Toxicol Environ Health A 23:207–216

    CAS  Google Scholar 

  • Smith PA, Thompson MJ, Edwards JW (2002) Estimating occupational exposure to the pyrethroid termiticide bifenthrin by measuring metabolites in urine. J Chromatogr B 778:113–120

    CAS  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59

    CAS  Google Scholar 

  • Song J-H, Narahashi T (1996) Modulation of sodium channels of rat cerebellar Purkinje neurons by the pyrethroid tetramethrin. J Pharmacol Exp Ther 277:445–453

    CAS  Google Scholar 

  • Sorich MJ, McKinnon RA, Miners JO, Smith PA (2006) The importance of local chemical structure for chemical metabolism by human uridine 5′-diphosphate-gluronyltransferase. J Chem Inf Model 46:2692–2697

    CAS  Google Scholar 

  • Southwood J (1985a) PP321: Acute oral toxicity studies. Zeneca Agricultural Products Laboratory Project No. CTL/P/1102, Wilmington, DE.

    Google Scholar 

  • Southwood J (1985b) PP993: Acute oral toxicity, acute intraperitoneal toxicity, and acute dermal toxicity studies. Zeneca Agricultural Products Laboratory Project No. CTL/P/986, Wilmington, DE.

    Google Scholar 

  • Staiger LE, Quistad GB (1984) Metabolism of [benzyl-U-ring-14C] fluvalinate by rats. J Agric Food Chem 32:1130–1133

    CAS  Google Scholar 

  • Stephens RH, O’Neill CA, Warhurst A, Carlson GL, Rowland M, Warhurst G (2001) Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther 296:584–591

    CAS  Google Scholar 

  • Stok JE, Huang H, Jones PD, Wheelock CE, Morisseau C, Hammock BD (2004) Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes. J Biol Chem 279:29863–29869

    CAS  Google Scholar 

  • Sudhahar CG, Haney RM, Xue Y, Stahelin RV (2008) Cellular membranes and lipid-binding domains as attractive targets for drug development. Curr Drug Targets 9:603–613

    CAS  Google Scholar 

  • Suzuki T, Miyamoto J (1974) Metabolism of tetramethrin in houseflies and rats in vitro. Pestic Biochem Physiol 4:86–97

    CAS  Google Scholar 

  • Suzuki T, Ohno N, Miyamoto J (1976) New metabolites of (+)-cis-fenothrin, 3 phenoxybenzyl (+)-cis-chrysanthemumate, in rats. J Pestic Sci 1:151–152

    CAS  Google Scholar 

  • Symington SB, Frisbie RK, Clark JM (2008) Characterization of 11 commercial pyrethroids on the functional attributes of rat brain synaptosomes. Pestic Biochem Physiol 92:61–69

    CAS  Google Scholar 

  • Tamai I, Takanaga H, Maeda H, Sai Y, Ogihara T, Higashida H, Tsuji A (1995) Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acid. Biochem Biophys Res Commun 214:482–489

    CAS  Google Scholar 

  • Tan HL, Bezzina CR, Smits JPP, Verkerk AO, Wilde AAM (2003) Genetic control of sodium channel function. Cardiovasc Res 57:961–973

    CAS  Google Scholar 

  • Tan J, Liu Z, Wang R, Huang ZY, Chen AC, Gurevitz M, Dong K (2005) Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67:513–522

    CAS  Google Scholar 

  • Tan X, Hou S, Wang M (2007) Enantioselective and diastereoselective separation of synthetic pyrethroid insecticides on a novel chiral stationary phase by high-performance liquid chromatography. Chirality 19:574–580

    CAS  Google Scholar 

  • Tatebayashi H, Narahashi T (1994) Differential mechanism of action of the pyrethroid tetramethrin on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 270:595–603

    CAS  Google Scholar 

  • Tateno C, Ito S, Tanaka M, Yoshitake A (1993) Effects of pyrethroid insecticides on gap junctional intercellular communications in Balb/c3T3 cells by dye-transfer assay. Cell Biol Toxicol 9:215–221

    CAS  Google Scholar 

  • Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL (2002) A physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci 66:34–53

    CAS  Google Scholar 

  • Tomigahara Y, Mori M, Shiba K, Isobe N, Kaneko H, Nakatsuka I, Yamada H (1994a) Metabolism of tetramethrin isomers in rat. I. Identification of a sulfonic acid type of conjugate and reduced metabolites. Xenobiotica 24:473–484

    CAS  Google Scholar 

  • Tomigahara Y, Mori M, Shiba K, Isobe N, Kaneko H, Nakatsuka I, Yamada H (1994b) Metabolism of tetramethrin isomers in rat. II. Identification and quantification of metabolites. Xenobiotica 24:1205–1214

    CAS  Google Scholar 

  • Tomigahara Y, Shiba K, Isobe N, Kaneko H, Nakatsuke I, Yamada H (1994c) Identification of two new types of S-linked conjugates of Etoc in rat. Xenobiotica 24:839–852

    CAS  Google Scholar 

  • Tomigahara Y, Onogi M, Miki M, Yanagi K, Shiba K, Kaneko H, Nakatsuka I, Yamada H (1996) Metabolism of tetramethrin isomers in rat. III. Stereochemistry of reduced metabolites. Xenobiotica 26:201–210

    CAS  Google Scholar 

  • Tomigahara Y, Onogi M, Saito K, Kaneko H, Nakatsuka I, Yamane S (1997) Metabolism of tetramethrin in rat. IV. Tissues responsible for formation of reduced and hydrated metabolites. Xenobiotica 27(9):961–971

    CAS  Google Scholar 

  • Tornero-Velez R, Mirfazaelian A, Kim KB, Anand SS, Kim HJ, Haines WT, Bruckner JV, Fisher JW (2010) Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using PBPK model. Toxicol Appl Pharmacol 244:208–217

    CAS  Google Scholar 

  • Tsuji T, Kaneda N, Kado K, Yokokura T, Yoshimoto T, Tsuru D (1991) CPT-11 converting enzyme from rat serum: purification and some properties. J Pharmacobiodyn 14:341–349

    CAS  Google Scholar 

  • Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, Langguth P (2006) In silico modeling of non-linear drug absorption for the P-gp substrate Talinolol and of consequences for the resulting pharmacodynamic effect. Pharm Res 23:1712–1720

    CAS  Google Scholar 

  • Tullman RH (1987) Data Evaluation Report No. 005731. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Ueda K, Gaughan LC, Casida JE (1975) Metabolism of (+)-trans- and (+)-cis -Resmethrin in rats. J Agric Food Chem 23:106–115

    CAS  Google Scholar 

  • Ueda K, Cornwell MM, Gottesman MM, Pastan I, Roninson IB, Ling V, Riordan JR (1986) The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 141:956–962

    CAS  Google Scholar 

  • Ulrich E, Sey YM, Harrison RA, DeVito MJ (2008) LC/MS method for the analysis of permethrin enantiomers in biological matrices. 20th International Symposium on Chirality, Geneva, Switzerland, July 6–9, 2008.

    Google Scholar 

  • Unai T, Casida JE (1977) Synthesis of isomeric 3-(2,2-Dichlorovinyl)-2-hydroxymethyl-2-methylcyclopropanecarboxylic acids and other permethrin metabolites. J Agric Food Chem 25:979–987

    CAS  Google Scholar 

  • Valverde A, Aguilera A, Rodriguez M, Boulaid M (2001) What are we determining using gas chromatographic multiresidue methods: tralomethrin or deltamethrin? J Chromatogr A 943(1):101–111

    Google Scholar 

  • Van der Rhee HJ, Farquhar JA, Vermeulen NP (1989) Efficacy and transdermal absorption of permethrin in scabies patients. Acta Derm Venerol 69:170–173

    Google Scholar 

  • Varsho BJ (1996) Acute oral toxicity study of deltamethrin in albino rats. AgrEvo USA Company Study No. WIL-274001.

    Google Scholar 

  • Venkatakrishnan K, Von Moltke LL, Obach RS, Greenblatt DJ (2000) Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther 293:343–350

    CAS  Google Scholar 

  • Vistoli G, Pedretti A, Mazzolari A, Testa B (2010) In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analysis and MD simulations. Bioorg Med Chem 18:320–329

    CAS  Google Scholar 

  • Vozeh S, Taeschner W, Wenk M (1990) Pharmacokinetic drug data. In: Clinical pharmacokinetics drug data handbook. ADIS, Auckland, NZ. pp 1–38.

    Google Scholar 

  • Wadkins RM, Hyatt JL, Wei X, Yoon KJP, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM (2005) Identification and characterization of novel benzyl (diphenylethane-1,2-dione) analogues as inhibitors of mammalian carboxylesterases. J Med Chem 48:2906–2915

    CAS  Google Scholar 

  • Wang P, Zhou Z, Jiang S, Yang L (2004) Chiral resolution of cypermethrin on cellulose-tris(3,5-dimethylphenyl-carbamate) chiral stationary phase. Chromatographia 59:625–629

    CAS  Google Scholar 

  • Wang Q, Qiu J, Zhu W, Jia G, Li J, Bi C, Zhou Z (2006) Stereoselective degradation kinetics of theta-cypermethrin in rats. Environ Sci Technol 40:721–726

    CAS  Google Scholar 

  • Wang M, Wang Q, Hong C, Sleczka B, D’Arienzo C, Josephs J, Ye X-Y, Robl J, Gordon D, Rodrigues D, Harper T (2010) Prediction of in vivo enantiomeric compositions by modeling in vitro metabolic profiles. J Pharm Sci 99:3234–3245

    CAS  Google Scholar 

  • Waxman SG, Craner MJ, Black JA (2004) Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25:584–591

    CAS  Google Scholar 

  • Weiner ML, Nemec M, Sheets L, Sargent D, Breckenridge (2009) Comparative functional observational battery study of twelve commercial pyrethroid insecticides in male rate following oral exposure. Neurotoxicology 30S:S1–S16

    Google Scholar 

  • Wester RC, Maibach HI (1977) In: Drill VA, Lazar P (eds) Cutaneous toxicology. Academic, New York, p 111

    Google Scholar 

  • Wester RC, Maibach HI (1993) Animal models for percutaneous absorption. In: Wang RGM, Knaak JB, Maibach HI (eds) Health risk assessment: dermal and inhalation exposure and absorption of toxicants. CRC, Boca Raton, FL

    Google Scholar 

  • Wester RC, Noonan PK (1980) Relevance of animal-moles for percutaneous-absorption. Int J Pharm 7:99–110

    Google Scholar 

  • Wester RC, Bucks DAW, Maibach HI (1994) Human in vivo percutaneous absorption of pyrethrin and piperonyl butoxide. Food Chem Toxicol 32:51–53

    CAS  Google Scholar 

  • Wheelock CE, Wheelock AM, Zhang R, Stok JE, Morisseau C, Le Valley SE (2003) Evaluation of alpha-cyanoesters as fluorescent substrates for examining interindividual variation in general and pyrethroid-selective esterases in human liver microsomes. Anal Biochem 315:208–222

    CAS  Google Scholar 

  • Wheelock CR, Miller JL, Miller MJ, Phillips BM, Huntley SA, Gee SJ, Tjeerdem RS, Hammock BD (2006) Use of carboxylesterase activity to remove pyrethroid-associated toxicity to Ceriodaphnia dubia and Hyalella azteca toxicity in identification evaluations. Environ Toxicol Chem 25:973–984

    CAS  Google Scholar 

  • White S (1994) Protein membrane structure. Oxford University Press, Oxford

    Google Scholar 

  • White INH, Verschoyle RD, Moradian MH, Barnes JM (1976) The relationship between brain levels of cismethrin and bioresmethrin in female rats and neurotoxic effects. Pestic Biochem Physiol 6:491–500

    CAS  Google Scholar 

  • WHO (2005a) WHO Specifications and evaluations for public health pesticides, Deltamethrin, (S)-a-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylate. WHO, Genève.

    Google Scholar 

  • WHO (2005b) The WHO Recommended Classification of Pesticides by Hazard. Guidelines to Classification 2004, International Programme on Chemical Safety. WHO/PCS/01.5, Genève, http://www.who.int/ipcs/publications/pesticides_hazard/en/.

  • WHO (World Health Organization) (1965) Evaluation of the toxicity of pesticide residues in food: dimethrin. FAO meeting report PL/1965/10/1. Food and Agriculture Organization (United Nations) www.inchem.org/documents/jmpr/jmpmono/v065pr21.htm

  • Williams RL, Bernard CE, Krieger RI (2003) Human exposure to indoor residential cyfluthrin residues during a structured activity program. J Expo Anal Environ Epidemiol 13:112–119

    CAS  Google Scholar 

  • Wilson ZE, Rostami-Hodjegan A, Burn JL, Tooley A, Boyle J, Ellis SW, Tucker GT (2003) Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br J Clin Pharmacol 56:433–440

    CAS  Google Scholar 

  • Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    CAS  Google Scholar 

  • Woollen BH, Marsh JR, Laird WJD, Lesser JE (1992) The metabolism of cypermethrin in man: differences in urinary profiles following oral and dermal administration. Xenobiotica 22:983–991

    CAS  Google Scholar 

  • Wu A, Liu Y (2003) Prolonged expression of c-Fos and c-Jun in the cerebral cortex of rats after deltamethrin treatment. Brain Res Mol Brain Res 110:147–151

    CAS  Google Scholar 

  • Xu C, Wang J, Liu W, Sheng GD, Tu Y, Ma Y (2007) Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide Lambda-Cyhalothrin. Environ Toxicol Chem 27:174–181

    Google Scholar 

  • Yamamoto I, Elliot M, Casida JE (1971) Metabolic fate of pyrethrin I, pyrethrin II, and allethrin. Bull World Health Organ 44:347–348

    CAS  Google Scholar 

  • Yamazaki K, Kanaoka M (2004) Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci 93:1480–1494

    CAS  Google Scholar 

  • Yang J, Tucker GT, Rostami-Hodjegan A (2004a) Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther 76:931

    Google Scholar 

  • Yang G-S, Vazquez PP, Frenich AG, Vidal JLM, Aboul-Enein HY (2004b) Separation on CHIRALCEL OD-R with methanol/water, and acetonitrile/water mobile phases. J Liq Chromatogr Rel Technol 27(10):1507–1521

    CAS  Google Scholar 

  • Yoon KJ-P, Krull EJ, Morton CL, Bornmann WG, Lee RE, Potter PM, Danks MK (2003) Activation of a camptothecin prodrug by specific carboxylesterases as predicted by quantitative structure-activity relationship and molecular docking studies. Mol Cancer Ther 2:1171–1181

    CAS  Google Scholar 

  • Youdim K, Dodia R (2010) Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis–Menten constants. Xenobiotica 40:235–244

    CAS  Google Scholar 

  • Youdim KA, Zayed A, Dickins M, Phipps A, Griffiths M, Darekar A, Hyland R, Fahmi O, Hurst S, Plowchalk DR, Cook J, Guo F, Obach RS (2008) Application of CYP3a4 in vitro data to predict clinical drug-drug interactions: predictions of compounds as objects of interaction. Br J Clin Pharmacol 65:680–692

    CAS  Google Scholar 

  • Yu LX, Lipka E, Crison JR, Amidon GL (1996) Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Del Rev 19:359–376

    CAS  Google Scholar 

  • Zeng S, Tang Y (2009) Effect of clustered ion channels along an unmyelinated axon. Physical Rev E 80:1–9

    Google Scholar 

  • Zhang H (2005) A new approach for the tissue-blood partition coefficients of neutral and ionized compounds. J Chem Inf Model 45:121–127

    CAS  Google Scholar 

  • Zhang X, Tsang AM, Okino MS, Power FW, Knaak JB, Harrison LS, Dary CC (2007) A physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) model for carbofuran in Sprague-Dawley rats using the Exposure Related Dose Estimating Model (ERDEM). Toxicol Sci 100:345–359

    CAS  Google Scholar 

  • Zhe X, Wenwei X, Hua H, Lirui P, Xu X (2008) Direct chiral resolution and its application to the determination of the pesticide tetramethrin in soil by high-performance liquid chromatography using polysaccharide-type chiral stationary phase. J Chromatogr Sci 46:783–786

    CAS  Google Scholar 

Download references

Acknowledgments

Our thanks are extended to Prof. Herbert N. Nigg, University of Florida, and Prof. James R. Olson, The State University of New York at Buffalo, for reviewing the manuscript of this article and making helpful suggestions that improve its quality. We also thank SRA International, Las Vegas, NV, for their skilled work in preparing this manuscript for publication and Dr. Robert Fraczkiewic, Simulations-plus, Lancaster, California, for calculating the Predicted V max and K m values for the CYP450s using ADMET Predictor.

The work on this review was funded by the US EPA through General Services Administration Contract GS-35F-43570, tasks EP0THO00393 and EP11HO00301 with General Dynamics Information Technology (GDIT), Henderson, NV. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy, nor does it represent the official views of GDIT. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Knaak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Knaak, J.B. et al. (2012). Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 219. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3281-4_1

Download citation

Publish with us

Policies and ethics