Skip to main content

Organic RFID Tags

  • Chapter
  • First Online:
Applications of Organic and Printed Electronics

Abstract

Organic RFID tags are increasingly gaining credibility as a possible low-cost barcode replacement for product identification. This will only happen if organic RFID tags can operate in the frequency range defined by well-accepted EPC standards. This chapter evaluates the performance of existing organic RFID demonstrators and confirms that, based on lab scale demonstration of organic RFID tags, performance comparable to the EPC standards can be obtained. Moreover, the integration of sensors with the tags will enable added functionality and applications beyond pure identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    © 2009 Elsevier. Reprinted, with permission, from [5].

References

  1. Marsman AW, Hart CM, Gelinck GH, Geuns TCT, de Leeuw DM (2004) Doped polyaniline polymer fuses: electrically programmable read-only-memory elements. J Mat Res 19:2057–2060

    Google Scholar 

  2. Cantatore E, Geuns TCT, Gelinck GH, van Veenendaal E, Gruijthuijsen AFA, Schrijnemakers L, Drews S, de Leeuw DM (2007) A 13.56 MHz RFID system based on organic transponders. IEEE J Solid-State Circ 42(1):84–92

    Google Scholar 

  3. Ullmann A, Böhm M, Krumm J, Fix W (2007) Polymer multi-bit RFID transponder. International conference on organic electronics (ICOE) 4–7 June 2007, Abstract 53, Eindhoven (The Netherlands)

    Google Scholar 

  4. Myny K, Steudel S, Vicca P, Genoe J, Heremans P (2008) An integrated double half-wave organic Schottky diode rectifier on foil operating at 13.56 MHz. Appl Phys Lett 93:093305

    Google Scholar 

  5. Myny K, Steudel S, Vicca P, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, Genoe J, Dehaene W, Heremans P (2009) Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid State Electron 53(12):1220–1226

    Google Scholar 

  6. Myny K, Van Winckel S, Steudel S, Vicca P, De Jonge S, Beenhakkers MJ, Sele CW, van Aerle NAJM, Gelinck GH, Genoe J, Heremans P (2008) An inductive coupled 64 bit organic RFID tag operating at 13.56 MHz with a data rate of 787 b/s. IEEE international solid-state circuits conference—digest of technical papers, session 15.3, San Francisco, pp 282–283

    Google Scholar 

  7. Myny K, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, Genoe J, Dehaene W, Heremans P (2009) A 128 bit organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s. IEEE international solid-state circuits conference—digest of technical papers, San Francisco, pp 11.6

    Google Scholar 

  8. Myny K, Steudel S, Smout S, Vicca P, Furthner F, van der Putten B, Tripathi AK, Gelinck GH, Genoe J, Dehaene W, Heremans P (2010) Organic RFID transponder chip with data rate compatible with electronic product coding. Org Electron 11:1176–1179

    Article  Google Scholar 

  9. Huitema HEA (2008) Rollable displays: the start of a new mobile device generation. 7th annual flexible electronics and displays conference USDC, Phoenix, Arizona, USA

    Google Scholar 

  10. Rolin C, Steudel S, Vicca P, Genoe J, Heremans P (2009) Functional pentacene thin films grown by in-line organic vapor phase speeds above 2 m/min. Appl Phys Exp 2:086503

    Google Scholar 

  11. Finkenzeller K (2002) RFID handbook, Edition 1. Wiley, New York, p 114, Chap. 5

    Google Scholar 

  12. de Leeuw D (1999) Identification transponder. U.S. patent WO99/30432, 17 June 1999

    Google Scholar 

  13. Tanase C, Meijer EJ, Blom PWM, de Leeuw DM (2003) Unifaction of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys Rev Lett 91:216601

    Google Scholar 

  14. De Vusser S, Steudel S, Myny K, Genoe J, Heremans P (2005) Mat Res Soc Symp Proc 870E, H1.4.1-H1.4.6

    Google Scholar 

  15. Steudel S, Myny K, Arkhipov V, Deibel C, De Vusser S, Genoe J, Heremans P (2005) Nat Mater 4:597–600

    Google Scholar 

  16. Zhu ZT, Mason JT, Dieckmann R, Malliaras GG (2002) Appl Phys Lett 81:24

    Google Scholar 

  17. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York, vol 1, p 663, Chap. 6

    Google Scholar 

  18. Marien H, Steyaert MSJ, van Veenendaal E, Heremans P (2011) A fully integrated ΔΣ ADC in organic thin-film transistor technology on flexible plastic foil. IEEE J Solid-State Circ 46(1):276–284

    Google Scholar 

  19. Marien H, Steyaert M, van Aerle N, Heremans P (2010) An analog organic first-order CT ΔΣ ADC on a flexible plastic substrate with 26.5 dB precision. IEEE international solid-state circuits conference—digest of technical papers, pp 136–137

    Google Scholar 

  20. Bode D, Rolin C, Schols S, Debucquoy M, Steudel S, Gelinck GH, Genoe J, Heremans P (2010) Noise margin analysis for organic thin film complementary technology. IEEE Trans Electron Devices 57(1):201–208

    Article  Google Scholar 

  21. Blache R, Krumm J, Fix W (2009) Organic CMOS circuits for RFID applications. IEEE international solid-state circuits conference—digest of technical papers, pp 208–209

    Google Scholar 

  22. Myny K, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, Genoe J, Dehaene W, Heremans P (2011) Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J Solid-State Circ 46(5):1223–1230

    Google Scholar 

  23. Myny K, Beenhakkers MJ, van Aerle NAJM, Gelinck GH, Genoe J, Dehaene W, Heremans P (2010) Robust digital design in organic electronics by dual-gate technology. IEEE international solid-state circuits conference—digest of technical papers, pp 140–141

    Google Scholar 

  24. Steudel S, De Vusser S, Myny K, Lenes M, Genoe J, Heremans P (2006) Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. J Appl Phys 99:114599

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in collaboration between IMEC and TNO in the frame of the HOLST Centre. Part of it has been supported by the EC-funded IP POLYAPPLY (IST #507143) and FP7 project ORICLA (ICT-247798). The authors also thank Klaus Schmidegg of Hueck Folien GmbH for the antenna foils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Myny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myny, K. et al. (2013). Organic RFID Tags. In: Cantatore, E. (eds) Applications of Organic and Printed Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3160-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3160-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3159-6

  • Online ISBN: 978-1-4614-3160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics