Skip to main content

Vitrified Bonding Systems and Heat Treatment

  • Chapter
  • First Online:
  • 1530 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter focuses on vitrified bonding systems and their heat treatment and explains the types of microstructural phases that are encountered during the firing process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Swanson PA, Vetter AF (1984) The measurement of abrasive particle shape and its effect on wear. ASLE Trans 28(2):225–230

    Article  Google Scholar 

  2. Jackson MJ (2001) J Manuf Proc 3:17–28

    Google Scholar 

  3. Krabacher EJ (1959) Trans ASME J Eng Ind 81:187–200

    Google Scholar 

  4. Geopfert GJ, Williams JL (1959) Mech Eng 81:69-73

    Google Scholar 

  5. Hahn RS (1962) In: Proceedings of the third international machine tool design and research conference, Manchester, UK, Pergamon Press, UK, pp 129–154

    Google Scholar 

  6. Tarasov LP (1963) In: International research in production engineering—American Society of Mechanical Engineers (ASME), USA, Paper No. 21, p 196

    Google Scholar 

  7. Bhattacharyya SK, Grisbrook H, Moran H (1965) Microtechnic 22:114–116

    Google Scholar 

  8. Malkin S, Cook NH (1971) Trans ASME J Eng Ind 93:1120–1128

    Google Scholar 

  9. Jackson MJ (2002) Trans North Am Manuf Res Inst Soc Manuf Eng 30:287–294

    Google Scholar 

  10. Decneut A, Snoeys R, Peters J (1970) Sonic testing of grinding wheels. Report MC 36, Nov 1970, Centre de Recherces Scientifiques et Techniques de L’industrie des Fabrications Metalliques, University of Louvain, Belgium

    Google Scholar 

  11. Winkler ER, Sarver JF, and Cutler IB (1966) J Am Ceram Soc 49:634–637

    Google Scholar 

  12. Walmsley JC, Lang AR (1988) In: Barrett C (ed) Advances in ultrahard materials application and technology, De Beers Industrial Diamond Division, UK, pp 61–75

    Google Scholar 

  13. Lundin ST (1959) Studies on triaxial whiteware bodies, Almqvist and Wiksell, Stockholm, Sweden

    Google Scholar 

  14. Malkin S, Cook NH (1971) The wear of grinding wheels—Part 1: attritious wear. Trans ASME J Eng Ind 93:1120–1128

    Article  Google Scholar 

  15. Yoshikawa H (1963) Fracture wear of grinding wheels. International Research in Production Engineering—American Society of Manufacturing Engineers, Paper No. 23, p 209

    Google Scholar 

  16. Tarasov LP (1963) Grinding wheel wear grinding tool steels. International Research in Production Engineering—American Society of Manufacturing Engineers, Paper No. 21, p 196

    Google Scholar 

  17. Yoshikawa H, Sata T (1963) Study on wear of grinding wheels—Part 1: bond fracture in grinding wheels. Trans ASME J Eng Ind 85:39–43

    Article  Google Scholar 

  18. Tsuwa H (1960) On the behaviour of abrasive grains in the grinding process. Technical Report of Osako University, Japan, vol 10, pp 733–743

    Google Scholar 

  19. Tsuwa H (1961) On the behaviour of abrasive grains in the grinding process—part 2. Technical Report of Osako University, Japan, vol 11, pp 287–298

    Google Scholar 

  20. Tsuwa H (1961) On the behaviour of abrasive grains in the grinding process—part 3. Technical Report of Osako University, Japan, vol 11, pp 299–309

    Google Scholar 

  21. Tanaka Y, Ikawa N (1962) Behaviour of abrasive grains on the diamond wheel. Technical Report of Osako University, Japan, vol 12, pp 345–354

    Google Scholar 

  22. Geopfert GJ, Williams JL (1959) The wear of abrasives in grinding. Mech Eng 81:69–73

    Google Scholar 

  23. Tsuwa H (1964) An investigation of grinding wheel cutting edges. Trans ASME J Eng Ind 86:371–382

    Article  Google Scholar 

  24. Lal GK, Shaw MC (1972) Wear of single abrasive grains in fine grinding. In: Proceedings of the international grinding conference, Pittsburgh, USA, pp 107–126

    Google Scholar 

  25. Eiss NS (1967) Fracture of abrasive grains in grinding. Trans ASME J Eng Ind 89:463–470

    Article  Google Scholar 

  26. Bhattacharyya SK, Grisbrook H, Moran H (1965) Analysis of grit fracture with changes in grinding conditions. Microtechnic 22:114–116

    Google Scholar 

  27. Mohun W (1962) Grinding with abrasive discs—parts 1, 2, and 3. Trans ASME J Eng Ind 84:431–482

    Article  Google Scholar 

  28. Saito K, Kagiwada T (1974) Transient distribution of temperature and thermal stress in a grain due to a pulsating heat source. Bull Jpn Soc Precis Eng 8:125–126

    Google Scholar 

  29. Storch W, Ruf H, Scholze H (1984) Quartz particles contained in porcelain bodies. Berichte Deut Keram Ges 61:325

    Google Scholar 

  30. Binns E (1962) Refractory ceramics. Sci Ceram 1:315

    Google Scholar 

  31. Ford WF, White J (1951) The effect of heat on ceramics. Trans J Brit Ceram Soc 50:461

    Google Scholar 

  32. Kirchoff G, Pompe W, Bahr HA (1982) Acoustic emission study of cracks in porcelain bodies. J Mat Sci 17:2809

    Article  Google Scholar 

  33. Jackson MJ, Mills B (1997) Dissolution of quartz in vitrified ceramic materials. J Mat Sci 32:5295–5304

    Article  Google Scholar 

  34. Alexander IE, Klug HP (1948) X-ray diffraction procedures. Anal Chem 20:886

    Article  Google Scholar 

  35. Khandelwal SK, Cook RL (1970) Effect of alumina additions on crystalline constituents and fired properties of electrical porcelain. Am Ceram Soc Bull 49:522–526

    Google Scholar 

  36. Jander W (1927) Reaktion im festen zustande bei hoheren temperaturen (Reactions in solids at high temperature). Z Anorg U Allgem Chem 163:1–30

    Article  Google Scholar 

  37. Krause P, Keetman E (1936) Zur kenntnis der keramischen brennvorgange (On combustion processes in ceramics). Sprechsaal 69:45–47

    Google Scholar 

  38. Monshi A (1990) Investigation into the strength of whiteware bodies. Ph.D. Thesis, University of Sheffield, UK

    Google Scholar 

  39. Jackson MJ (1995) Ph.D. Thesis, Liverpool University, UK, December

    Google Scholar 

  40. Snoeys R, Leuven KU, Maris M, Wo NF, Peters J (1978) Thermally induced damage in grinding. Annals CIRP 27(1):571–581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, M.J., Hitchiner, M.P. (2013). Vitrified Bonding Systems and Heat Treatment. In: High Performance Grinding and Advanced Cutting Tools. SpringerBriefs in Applied Sciences and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3116-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3116-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3115-2

  • Online ISBN: 978-1-4614-3116-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics