Skip to main content

Molecular Characterization of Renal Cell Carcinoma

  • Chapter
  • First Online:
Book cover Renal Cell Carcinoma

Abstract

Renal cell carcinoma (RCC) is a heterogeneous disease that includes several histologically distinct subtypes. The molecular genetic defects that occur in sporadic adult renal cell carcinoma are extensive and complex ranging from single DNA changes, to large chromosomal defects, to signature disruptions in the transcription of hundreds of genes. These changes are often shared among each histological RCC subtype, illustrating the significance of these genetic changes to the disease phenotype. Furthermore, epigenetics changes such as global change in gene transcription can be used to accurately differentiate between even the rarest forms of RCC. All of the genetic and epigenetic changes help define the diagnosis and staging of RCC, as well as highlight potential therapeutic targets for the disease. This chapter gives an overview of the most common genetic abnormalities that occur in clear cell, papillary, and chromophobe subtypes of RCC. We will discuss the various molecular changes that occur within each histological subtype and how they are used to improve diagnosis and treatment of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

Bacterial artificial chromosome

BHDS:

Birt-Hogg-Dubé syndrome

ccRCC:

Clear cell renal cell carcinomas

CGH:

Comparative genomic hybridization

EPO:

Epoetin

FH:

Fumarate hydratase

FISH:

Fluorescence in situ hybridization

FLCN:

Folliculin

GLUT1:

Glucose transporter

GSEA:

Gene set enrichment analysis

H3K4Me3:

Histone H3 lysine 4 trimethylation

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

HLRCC:

Hereditary leiomyomatosis and renal cancer

HPRC:

Hereditary papillary renal carcinoma

IL2:

Interleukin-2

LOH:

Loss of heterozygosity

LOX:

Lysyl oxidase

LRRK2:

Leucine-rich repeat kinase 2

OXPHOS:

Oxidative phosphorylation

PBRM1:

Polybromo-1 gene

PDGF:

Platelet-derived growth factor

RCC:

Renal cell carcinoma

RFLP:

Restriction fragment length polymorphisms

SNP:

Single-nucleotide polymorphism

VEGF:

Vascular endothelial growth factor

References

  1. Maher ER, Kaelin WG Jr (1997) von Hippel-Lindau disease. Medicine (Baltimore) 76:381–391

    Article  CAS  Google Scholar 

  2. Latif F et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260(5112):1317–1320

    Article  PubMed  CAS  Google Scholar 

  3. Nickerson ML et al (2008) Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 14(15):4726–4734

    Article  PubMed  CAS  Google Scholar 

  4. Young AP, Kaelin WG Jr (2008) Senescence triggered by the loss of the VHL tumor suppressor. Cell Cycle 7(12):1709–1712

    Article  PubMed  CAS  Google Scholar 

  5. Young AP et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    Article  PubMed  CAS  Google Scholar 

  6. Varela I et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    Article  PubMed  CAS  Google Scholar 

  7. van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523

    Article  PubMed  CAS  Google Scholar 

  8. Dalgliesh GL, Furge K, Greenman C et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    Article  PubMed  CAS  Google Scholar 

  9. Wiegand KC et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543

    Article  PubMed  CAS  Google Scholar 

  10. Jones S et al (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231

    Article  PubMed  CAS  Google Scholar 

  11. Wang X et al (2004) Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer 112(4):636

    Article  PubMed  CAS  Google Scholar 

  12. Orlovsky K, Kalinkovich A, Rozovskaia T et al (2011) Down-regulation of homeobox genes MEIS1 and HOXA in MLL-rearranged acute leukemia impairs engraftment and reduces proliferation. Proc Natl Acad Sci U S A 108(19):7956–7961

    Article  PubMed  CAS  Google Scholar 

  13. Niu X et al. (2011) The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene. Epub 2011 Jul 4

    Google Scholar 

  14. Abidi FE et al (2008) Mutations in JARID1C are associated with X-linked mental retardation, short stature and hyperreflexia. J Med Genet 45(12):787–793

    Article  PubMed  CAS  Google Scholar 

  15. Adegbola A, Gao H, Sommer S, Browning M (2008) A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 146A(4):505–511

    Article  PubMed  CAS  Google Scholar 

  16. Santos-Rebouças CB et al (2011) A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci Lett 498(1):67–71

    Article  PubMed  CAS  Google Scholar 

  17. Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27(2):406–420

    Article  PubMed  CAS  Google Scholar 

  18. Duns G et al (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291

    Article  PubMed  CAS  Google Scholar 

  19. Morris ZS, McClatchey AI (2009) Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc Natl Acad Sci U S A 106(24):9767–9772

    Article  PubMed  CAS  Google Scholar 

  20. Duesberg P et al (2001) Aneuploidy verses gene mutations as cause of cancer. Curr Sci 81:490–500

    Google Scholar 

  21. Zbar B et al (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327(6124):721–724

    Article  PubMed  CAS  Google Scholar 

  22. Kovacs G, Brusa P (1988) Recurrent genomic rearrangements are not at the fragile sites on chromosomes 3 and 5 in human renal cell carcinomas. Hum Genet 80:99–101

    Article  PubMed  CAS  Google Scholar 

  23. Bugert O, Kovacs G (1996) Molecular differential diagnosis of renal cell carcinomas by microsatellite analysis. Am J Pathol 6:2081–2088

    Google Scholar 

  24. Bugert P, Kenck C, Kovacs G (1998) A 33 bp minisatellite repeat upstream of the ‘mutated in colon cancer’ gene at chromosome 5q21. Electrophoresis 19(8–9):1362–1365

    Article  PubMed  CAS  Google Scholar 

  25. Bugert P, Von Knobloch R, Kovacs G (1998) Duplication of two distinct regions on chromosome 5q in non-papillary renal-cell carcinomas. Int J Cancer 76(3):337–340

    Article  PubMed  CAS  Google Scholar 

  26. Presti JC Jr et al (1996) Renal cell carcinoma genetic analysis by comparative genomic hybridization and restriction fragment length polymorphism analysis. J Urol 156(1):281–285

    Article  PubMed  CAS  Google Scholar 

  27. Gunawan B et al (2001) Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res 61:7731–7738

    PubMed  CAS  Google Scholar 

  28. Gunawan B et al (2003) Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors. Cancer Res 63(19):6200–6205

    PubMed  CAS  Google Scholar 

  29. Moch H et al (1996) Genetic aberrations detected by comparative genomic hybridization are associated with clinical outcome in renal cell carcinoma. Cancer Res 56(1):27–30

    PubMed  CAS  Google Scholar 

  30. Brunelli M et al (2005) Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol 18(2):161–169

    Article  PubMed  CAS  Google Scholar 

  31. Paner GP et al (2006) High incidence of chromosome 1 abnormalities in a series of 27 renal oncocytomas: cytogenetic and fluorescence in situ hybridization studies. Arch Path Lab Med 131:81–85

    Google Scholar 

  32. Kovacs G et al (1997) The Heidelberg classification of renal cell tumours. J Pathol 183(2):131–133

    Article  PubMed  CAS  Google Scholar 

  33. Klatte T et al (2009) Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res 15(4):1162–1169

    Article  PubMed  CAS  Google Scholar 

  34. Toma MI et al (2008) Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10K single nucleotide polymorphism mapping array. Neoplasia 10(7):634–642

    PubMed  CAS  Google Scholar 

  35. Brunelli M et al (2008) Loss of chromosome 9p is an independent prognostic factor in patients with clear cell renal cell carcinoma. Mod Pathol 21(1):1–6

    Article  PubMed  CAS  Google Scholar 

  36. Hagenkord JM et al (2008) Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors. Diagn Pathol 3:44

    Article  PubMed  CAS  Google Scholar 

  37. Cohen AJ et al (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301(11):592–595

    Article  PubMed  CAS  Google Scholar 

  38. Glover TW et al (1988) Translocation t(3;8)(p14.2;q24.1) in renal cell carcinoma affects expression of the common fragile site at 3p14(FRA3B) in lymphocytes. Cancer Genet Cytogenet 31(1):69–73

    Article  PubMed  CAS  Google Scholar 

  39. Tajara EH et al (1988) Loss of common 3p14 fragile site expression in renal cell carcinoma with deletion breakpoint at 3p14. Cancer Genet Cytogenet 31(1):75–82

    Article  PubMed  CAS  Google Scholar 

  40. Shridhar V et al (1996) A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich protein and is mutated in renal cell carcinomas. Oncogene 12(9):1931–1939

    PubMed  CAS  Google Scholar 

  41. Elfving P et al (1997) Prognostic implications of cytogenetic findings in kidney cancer. Br J Urol 80(5):698–706

    Article  PubMed  CAS  Google Scholar 

  42. Schullerus D et al (1997) Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol 183(2):151–155

    Article  PubMed  CAS  Google Scholar 

  43. Herbers J et al (1997) Significance of chromosome arm 14q loss in nonpapillary renal cell carcinomas. Genes Chromosomes Cancer 19(1):29–35

    Article  PubMed  CAS  Google Scholar 

  44. Alimov A, Sundelin B, Wang N, Larsson C, Bergerheim U (2004) Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int J Oncol 25(1):179–185

    PubMed  CAS  Google Scholar 

  45. Beroukhim R et al (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69(11):4674–4681

    Article  PubMed  CAS  Google Scholar 

  46. Nagao K et al (2005) Allelic loss of 3p25 associated with alterations of 5q22.3 approximately q23.2 may affect the prognosis of conventional renal cell carcinoma. Cancer Genet Cytogenet 160(1):43–48

    Article  PubMed  CAS  Google Scholar 

  47. Junker K et al (2000) Genetic alterations in metastatic renal cell carcinoma detected by comparative genomic hybridization: correlation with clinical and histological data. Int J Oncol 17(5):903–908

    PubMed  CAS  Google Scholar 

  48. Amin MB et al (1997) Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 21(6):621–635

    Article  PubMed  CAS  Google Scholar 

  49. Jiang F et al (1998) Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol 153(5):1467–1473

    Article  PubMed  CAS  Google Scholar 

  50. Delahunt B et al (2001) Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol 32(6):590–595

    Article  PubMed  CAS  Google Scholar 

  51. Pignot G et al (2007) Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology 69(2):230–235

    Article  PubMed  Google Scholar 

  52. Waldert M et al (2008) Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC. BJU Int 102(10):1381–1384

    PubMed  Google Scholar 

  53. Yang XJ et al (2005) A molecular classification of papillary renal cell carcinoma. Cancer Res 65(13):5628–5637

    Article  PubMed  CAS  Google Scholar 

  54. Furge KA et al (2007) Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene 26(9):1346–1350

    Article  PubMed  CAS  Google Scholar 

  55. Furge KA et al (2007) Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma. Can Urol Assoc J 1(2 Suppl):S21–S27

    PubMed  Google Scholar 

  56. Furge KA et al (2007) Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res 67(7):3171–3176

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt L et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16(1):68–73

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt L et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18(14):2343–2350

    Article  PubMed  CAS  Google Scholar 

  59. Lubensky IA et al (1999) Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol 155(2):517–526

    Article  PubMed  CAS  Google Scholar 

  60. Bellon SF et al (2008) c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem 283(5):2675–2683

    Article  PubMed  CAS  Google Scholar 

  61. Koski TA et al (2009) Array comparative genomic hybridization identifies a distinct DNA copy number profile in renal cell cancer associated with hereditary leiomyomatosis and renal cell cancer. Genes Chromosomes Cancer 48(7):544–551

    Article  PubMed  CAS  Google Scholar 

  62. Looyenga BD et al (2011) Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A 108(4):1439–1444

    Article  PubMed  Google Scholar 

  63. Tomlinson IP et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30(4):406–410

    Article  PubMed  CAS  Google Scholar 

  64. Toro JR et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73(1):95–106

    Article  PubMed  CAS  Google Scholar 

  65. Lehtonen HJ et al (2006) Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43(6):523–526

    Article  PubMed  CAS  Google Scholar 

  66. Refae MA et al (2007) Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol 4(4):256–261

    Article  PubMed  CAS  Google Scholar 

  67. Wei MH et al (2006) Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43(1):18–27

    Article  PubMed  CAS  Google Scholar 

  68. Lehtonen HJ et al (2007) Conventional renal cancer in a patient with fumarate hydratase mutation. Hum Pathol 38(5):793–796

    Article  PubMed  CAS  Google Scholar 

  69. Kiuru M, Launonen V (2004) Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 4(8):869–875

    Article  PubMed  CAS  Google Scholar 

  70. Grubb RL 3rd et al (2007) Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177(6):2074–2079, discussion 2079–80

    Article  PubMed  CAS  Google Scholar 

  71. Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol 10(6):537–544

    PubMed  CAS  Google Scholar 

  72. Bruder E et al (2004) Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol 28(9):1117–1132

    Article  PubMed  Google Scholar 

  73. Argani P et al (2006) Translocation carcinomas of the kidney after chemotherapy in childhood. J Clin Oncol 24(10):1529–1534

    Article  PubMed  CAS  Google Scholar 

  74. Weterman MA et al (1996) Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Proc Natl Acad Sci USA 93(26):15294–15298

    Article  PubMed  CAS  Google Scholar 

  75. Sidhar SK et al (1996) The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 5(9):1333–1338

    Article  PubMed  CAS  Google Scholar 

  76. Meloni AM et al (1993) Translocation (X;1) in papillary renal cell carcinoma. A new cytogenetic subtype. Cancer Genet Cytogenet 65(1):1–6

    Article  PubMed  CAS  Google Scholar 

  77. Altinok G et al (2005) Pediatric renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions and clinicopathologic associations. Pediatr Dev Pathol 8(2):168–180

    Article  PubMed  CAS  Google Scholar 

  78. Kuroda N et al (2010) Diagnostic pitfall on the histological spectrum of adult-onset renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions. Med Mol Morphol 43(2):86–90

    Article  PubMed  Google Scholar 

  79. Argani P et al (2010) Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol 34(9):1295–1303

    Article  PubMed  Google Scholar 

  80. Takahashi M et al (2003) Molecular sub-classification of kidney cancer and the discovery of new diagnostic markers. Oncogene 22:6810–6818

    Article  PubMed  CAS  Google Scholar 

  81. Higgins JP et al (2003) Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 162(3):925–932

    Article  PubMed  CAS  Google Scholar 

  82. Schuetz AN et al (2005) Molecular classification of renal tumors by gene expression profiling. J Mol Diagn 7(2):206–218

    Article  PubMed  CAS  Google Scholar 

  83. Mayr JA et al (2008) Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res 14(8):2270–2275

    Article  PubMed  CAS  Google Scholar 

  84. Gasparre G et al (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17(7):986–995

    Article  PubMed  CAS  Google Scholar 

  85. Kovacs A et al (1992) Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol 167(3):273–277

    Article  PubMed  CAS  Google Scholar 

  86. Welter C et al (1989) Alteration of mitochondrial DNA in human oncocytomas. Genes Chromosomes Cancer 1(1):79–82

    Article  PubMed  CAS  Google Scholar 

  87. Menko FH et al (2009) Birt-Hogg-Dube syndrome: diagnosis and management. Lancet Oncol 10(12):1199–1206

    Article  PubMed  CAS  Google Scholar 

  88. Toro JR et al (2008) BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet 45(6):321–331

    Article  PubMed  CAS  Google Scholar 

  89. Birt AR, Hogg GR, Dubé WJ (1977) Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 113:1674–1677

    Article  PubMed  CAS  Google Scholar 

  90. Nickerson ML et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2(2):157–164

    Article  PubMed  CAS  Google Scholar 

  91. Pavlovich CP et al (2002) Renal tumors in the Birt-Hogg-Dube syndrome. Am J Surg Pathol 26(12):1542–1552

    Article  PubMed  Google Scholar 

  92. Adley BP et al (2006) Birt-Hogg-Dube syndrome: clinicopathologic findings and genetic alterations. Arch Pathol Lab Med 130(12):1865–1870

    PubMed  Google Scholar 

  93. Khoo SK et al (2003) Inactivation of BHD in sporadic renal tumors. Cancer Res 63(15):4583–4587

    PubMed  CAS  Google Scholar 

  94. Gad S, Lefèvre SH, Khoo SK, Giraud S, Vieillefond A, Vasiliu V, Ferlicot S, Molinié V, Denoux Y, Thiounn N, Chrétien Y, Méjean A, Zerbib M, Benoît G, Hervé JM, Allègre G, Bressac-de Paillerets B, Teh BT, Richard S (2007) Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br J Cancer 96(2):336–340

    Article  PubMed  CAS  Google Scholar 

  95. Brown JA et al (1996) Fluorescence in situ hybridization analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1. J Urol 156:31–35

    Article  PubMed  CAS  Google Scholar 

  96. Fuzesi L et al (1999) Cytogenetic analysis of 11 renal oncocytomas: further evidence of structural rearrangements of 11q13 as a characteristic chromosomal anomaly. Cancer Genet Cytogenet 107:1–6

    Article  Google Scholar 

  97. Pollack JR et al (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23(1):41–46

    Article  PubMed  CAS  Google Scholar 

  98. Snijders AM et al (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29(3):263–264

    Article  PubMed  CAS  Google Scholar 

  99. Barrett MT et al (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A 101(51):17765–17770

    Article  PubMed  CAS  Google Scholar 

  100. Zhao X et al (2005) Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65:5561–5570

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi M et al (2001) Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 98(17):9754–9759

    Article  PubMed  CAS  Google Scholar 

  102. Gieseg MA et al (2002) Expression profiling of human renal carcinomas with functional taxonomic analysis. BMC Bioinformatics 3:26

    Article  PubMed  Google Scholar 

  103. Boer JM et al (2001) Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res 11(11):1861–1870

    PubMed  CAS  Google Scholar 

  104. Jones J et al (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11(16):5730–5739

    Article  PubMed  CAS  Google Scholar 

  105. Liou LS et al (2004) Microarray gene expression profiling and analysis in renal cell carcinoma. BMC Urol 4:9

    Article  PubMed  Google Scholar 

  106. Yamazaki K et al (2003) Overexpression of KIT in chromophobe renal cell carcinoma. Oncogene 22(6):847–852

    Article  PubMed  CAS  Google Scholar 

  107. Skubitz KM, Skubitz AP (2002) Differential gene expression in renal-cell cancer. J Lab Clin Med 140(1):52–64

    Article  PubMed  CAS  Google Scholar 

  108. Skubitz KM et al (2006) Differential gene expression identifies subgroups of renal cell carcinoma. J Lab Clin Med 147(5):250–267

    Article  PubMed  CAS  Google Scholar 

  109. Zhou M, Kort E, Hoekstra P et al (2009) Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney are the same disease entity: molecular and histologic evidence. Am J Surg Pathol 33(1):72–80

    Article  PubMed  Google Scholar 

  110. Moch H et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154(4):981–986

    Article  PubMed  CAS  Google Scholar 

  111. Li G et al (2007) S100A1: a powerful marker to differentiate chromophobe renal cell carcinoma from renal oncocytoma. Histopathology 50(5):642–647

    Article  PubMed  CAS  Google Scholar 

  112. Lin F et al (2006) Expression of S-100 protein in renal cell neoplasms. Hum Pathol 37(4):462–470

    Article  PubMed  CAS  Google Scholar 

  113. Rocca PC et al (2007) Diagnostic utility of S100A1 expression in renal cell neoplasms: an immunohistochemical and quantitative RT-PCR study. Mod Pathol 20(7):722–728

    Article  PubMed  CAS  Google Scholar 

  114. Yao M et al (2007) Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res 13(1):152–160

    Article  PubMed  CAS  Google Scholar 

  115. Kosari F et al (2005) Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res 11(14):5128–5139

    Article  PubMed  CAS  Google Scholar 

  116. Zhao H et al (2006) Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med 3(1):e13

    Article  PubMed  CAS  Google Scholar 

  117. Tsui KH et al (2000) Prognostic indicators for renal cell carcinoma: a multivariate analysis of 643 patients using the revised 1997 TNM staging criteria. J Urol 163(4):1090–1095, quiz 1295

    Article  PubMed  CAS  Google Scholar 

  118. Gettman MT et al (2001) Pathologic staging of renal cell carcinoma: significance of tumor classification with the 1997 TNM staging system. Cancer 91(2):354–361

    Article  PubMed  CAS  Google Scholar 

  119. Han KR et al (2003) Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population. J Urol 170(6 Pt 1):2221–2224

    Article  PubMed  Google Scholar 

  120. Zisman A et al (2001) Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol 19(6):1649–1657

    PubMed  CAS  Google Scholar 

  121. Staller P et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311

    Article  PubMed  CAS  Google Scholar 

  122. Yao M et al (2005) Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 205(3):377–387

    Article  PubMed  CAS  Google Scholar 

  123. Desai KV et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci U S A 99(10):6967–6972

    Article  PubMed  CAS  Google Scholar 

  124. Ferrando AA et al (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87

    Article  PubMed  CAS  Google Scholar 

  125. Huang E et al (2003) Gene expression phenotypic models that predict the activity of oncogenic pathways. Nat Genet 34:226–230

    Article  PubMed  CAS  Google Scholar 

  126. Sweet-Cordero A et al (2005) An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37(1):48–55

    PubMed  CAS  Google Scholar 

  127. Bild AH et al (2005) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    Article  PubMed  CAS  Google Scholar 

  128. Chi JT et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3(3):e47

    Article  PubMed  CAS  Google Scholar 

  129. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  PubMed  CAS  Google Scholar 

  130. Kim S, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 6:144

    Article  PubMed  CAS  Google Scholar 

  131. Riss J et al (2006) Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res 66(14):7216–7224

    Article  PubMed  CAS  Google Scholar 

  132. Copland JA et al (2003) Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene 22(39):8053–8062

    Article  PubMed  CAS  Google Scholar 

  133. Tiwari G et al (2003) Gene expression profiling in prostate cancer cells with Akt activation reveals Fra-1 as an Akt-inducible gene. Mol Cancer Res 1:475–484

    PubMed  CAS  Google Scholar 

  134. Gerritsen ME et al (2003) Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 140(4):595–610

    Article  PubMed  CAS  Google Scholar 

  135. Minasian LM et al (1993) Interferon alfa-2a in advanced renal cell carcinoma: treatment results and survival in 159 patients with long-term follow-up. J Clin Oncol 11(7):1368–1375

    PubMed  CAS  Google Scholar 

  136. Shimazui T et al (2007) Prediction of in vitro response to interferon-alpha in renal cell carcinoma cell lines. Cancer Sci 98(4):529–534

    Article  PubMed  CAS  Google Scholar 

  137. Engelman JA et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  PubMed  CAS  Google Scholar 

  138. Bugert P, Pesti T, Kovacs G (2000) The tcf17 gene at chromosome 5q is not involved in the development of conventional renal cell carcinoma. Int J Cancer 86(6):806–810

    Article  PubMed  CAS  Google Scholar 

  139. Kuiper RP et al (2003) Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet 12(14):1661–1669

    Article  PubMed  CAS  Google Scholar 

  140. La Rochelle J et al (2010) Chromosome 9p deletions identify an aggressive phenotype of clear cell renal cell carcinoma. Cancer 116(20):4696–4702

    Article  PubMed  Google Scholar 

  141. Sultmann H et al (2005) Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res 11(2 Pt 1):646–655

    PubMed  Google Scholar 

  142. Vanharanta S, Buchta M, McWhinney SR et al (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74(1):153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tean Teh M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teh, B.T., Farber, L.J., Furge, K. (2012). Molecular Characterization of Renal Cell Carcinoma. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_5

Download citation

Publish with us

Policies and ethics