Skip to main content

Characterizing and Modulating the Tumor Microenvironment in Renal Cell Carcinoma: Potential Therapeutic Strategies

  • Chapter
  • First Online:
Book cover Renal Cell Carcinoma

Abstract

It has long been known that conventional strategies to curtail cell growth and proliferation (such as cytotoxic therapy) are not particularly effective in the setting of renal cell carcinoma (RCC). In recent years, translational efforts have yielded effective therapies predicated on the biology of the disease. Examples of this include cytokine therapy (i.e., interferon-α and interleukin-2) and angiogenesis inhibitors (i.e., sorafenib, sunitinib, pazopanib, and bevacizumab). While these agents have drastically altered the landscape of therapy for metastatic RCC, none of these options are curative. A major focus of investigation in recent years has been the complex interplay between tumor and its associated microenvironment. Although existing agents such as sunitinib may modulate this interplay to some extent, direct targeting of the tumor microenvironment is a promising strategy. This chapter serves to outline moieties that play a putative role in modulating immune cells in the tumor microenvironment. Of particular interest is signal transducer and activator of transcription 3 (Stat3), which appears to drive recruitment of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) to sites of tumor, thereby stifling the antitumor immune response. In recent years, pharmacologic strategies to antagonize Stat3 have emerged, including inhibitors of upstream activators Janus kinase 2 (Jak2) and fibroblast growth factor receptor (FGFR). A second, distinct strategy to augment the antitumor immune response is through disruption of cellular interactions that abrogate T-cell activity. Inhibitors of programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA4), including BMS-936558 and ipilimumab, appear to propagate T-cell activity, and are in varying stages of clinical development. Any success encountered with these therapies or combinations will underscore the critical importance of targeting not only the tumor itself but also the surrounding microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688–696

    PubMed  CAS  Google Scholar 

  2. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296

    Article  PubMed  CAS  Google Scholar 

  3. Heymach J, Tran HT, Fritsche HA et al (2009) Lower baseline levels of plasma hepatocyte growth factor (HGF), IL-6 and IL-8 are correlated with tumor shrinkage in renal cell carcinoma patients treated with pazopanib. Mol Cancer Ther 8(12 Suppl):A11

    Google Scholar 

  4. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004

    Article  PubMed  CAS  Google Scholar 

  5. Iwai K, Yamanaka K, Kamura T et al (1999) Identification of the von Hippel–Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 96:12436–12441

    Article  PubMed  CAS  Google Scholar 

  6. Lubensky I, Gnarra J, Bertheau P, Walther M, Linehan W, Zhuang Z (1996) Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. Am J Pathol 149:2089–2094

    PubMed  CAS  Google Scholar 

  7. Pal SK, Kortylewski M, Yu H, Figlin RA (2010) Breaking through a plateau in renal cell ­carcinoma therapeutics: development and incorporation of biomarkers. Mol Cancer Ther 9(12):3115–3125

    Article  PubMed  CAS  Google Scholar 

  8. Pal SK, Figlin RA (2011) Future directions of mammalian target of rapamycin (mTOR) inhibitor therapy in renal cell carcinoma. Target Oncol 6:5–16

    Article  PubMed  Google Scholar 

  9. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell ­carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  10. Escudier BJ, Bellmunt J, Negrier S et al (2009) Final results of the phase III, randomized, double-blind AVOREN trial of first-line bevacizumab (BEV) + interferon-{alpha}2a (IFN) in metastatic renal cell carcinoma (mRCC). J Clin Oncol (Meet Abstr) 27:5020

    Google Scholar 

  11. Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  PubMed  CAS  Google Scholar 

  12. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    Article  PubMed  CAS  Google Scholar 

  13. Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590

    Article  PubMed  CAS  Google Scholar 

  14. Rini BI, Halabi S, Rosenberg J et al (2009) Bevacizumab plus interferon-alpha versus interferon-alpha monotherapy in patients with metastatic renal cell carcinoma: Results of overall survival for CALGB 90206. J Clin Oncol (Meet Abstr) 27:LBA5019

    Google Scholar 

  15. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    Article  PubMed  CAS  Google Scholar 

  16. Escudier BJ, Negrier S, Gravis G et al (2010) Can the combination of temsirolimus and bevacizumab improve the treatment of metastatic renal cell carcinoma (mRCC)? Results of the randomized TORAVA phase II trial. J Clin Oncol (Meet Abstr) 28:4516

    Google Scholar 

  17. Pal SK, Figlin RA (2010) Renal cell carcinoma therapy in 2010: many options with little comparative data. Clin Adv Hematol Oncol 8:191–200

    PubMed  Google Scholar 

  18. Angevin E, Lin C, Pande AU et al (2010) A phase I/II study of dovitinib (TKI258), a FGFR and VEGFR inhibitor, in patients (pts) with advanced or metastatic renal cell cancer: phase I results. ASCO Meet Abstr 28:3057

    Google Scholar 

  19. Angevin E, Lopez JA, Pande A et al (2009) TKI258 (dovitinib lactate) in metastatic renal cell carcinoma (mRCC) patients refractory to approved targeted therapies: a phase I/II dose finding and biomarker study. ASCO Meet Abstr 27:3563

    Google Scholar 

  20. Sarker D, Molife R, Evans TRJ et al (2008) A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 14:2075–2081

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg J, Demetri GD, Choy E et al (2009) Preliminary results from a phase II study of ARQ 197 in patients with microphthalmia transcription factor family (MiT)-associated tumors. ASCO Meet Abstr 27:10502

    Google Scholar 

  22. Rini BI, Szczylik C, Tannir NM, et al (2011) AMG 386 in combination with sorafenib in patients (pts) with metastatic renal cell cancer (mRCC): a randomized, double-blind, placebo-controlled, phase II study. Presented at the 2011 Genitourinary Cancers Symposium (abstr 309) Orlando, FL

    Google Scholar 

  23. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69:2506–2513

    Article  PubMed  CAS  Google Scholar 

  24. Finke JH, Rini B, Ireland J et al (2008) Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 14:6674–6682

    Article  PubMed  CAS  Google Scholar 

  25. Paget G (1889) Remarks on a case of alternate partial anaesthesia. Br Med J 1:1–3

    Article  PubMed  CAS  Google Scholar 

  26. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  Google Scholar 

  27. Virchow R (1858) Cellularpathologie. In: Nature Publishing Group

    Google Scholar 

  28. Ewing J (1928) Neoplastic diseases. In: Nature Publishing Group

    Google Scholar 

  29. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895

    Article  PubMed  CAS  Google Scholar 

  30. Gnant M, Mlineritsch B, Schippinger W et al (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360:679–691

    Article  PubMed  CAS  Google Scholar 

  31. Saad F, Lipton A (2005) Zoledronic acid is effective in preventing and delaying skeletal events in patients with bone metastases secondary to genitourinary cancers. BJU Int 96:964–969

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan RN (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  33. Fujita K, Nakayama M, Nakai Y et al (2009) Vascular endothelial growth factor receptor 1 expression in pelvic lymph nodes predicts the risk of cancer progression after radical prostatectomy. Cancer Sci 100:1047–1050

    Article  PubMed  CAS  Google Scholar 

  34. Kelly WK, Halabi S, Carducci MA et al (2010) A randomized, double-blind, placebo-­controlled phase III trial comparing docetaxel, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with metastatic castration-resistant prostate cancer (mCRPC): Survival results of CALGB 90401. ASCO Meet Abstr 28:LBA4511

    Google Scholar 

  35. Sonpavde G, Periman PO, Bernold D et al (2010) Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol 21:319–324

    Article  PubMed  CAS  Google Scholar 

  36. Dror Michaelson M, Regan MM, Oh WK et al (2009) Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol 20:913–920

    Article  PubMed  CAS  Google Scholar 

  37. Erler JT (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  PubMed  CAS  Google Scholar 

  38. Kowanetz M, Wu X, Lee J et al (2010) Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci USA 107:21248–21255

    Article  PubMed  CAS  Google Scholar 

  39. Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  40. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  41. Zhong Z, Wen Z, Darnell J (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98

    Article  PubMed  CAS  Google Scholar 

  42. Jung JE, Lee H-G, Cho I-H et al (2005) STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J 19:1296–1298

    PubMed  CAS  Google Scholar 

  43. Kortylewski M, Kujawski M, Wang T et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  PubMed  CAS  Google Scholar 

  44. Nefedova Y, Cheng P, Gilkes D et al (2005) Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol 175:4338–4346

    PubMed  CAS  Google Scholar 

  45. Ko JS, Rayman P, Ireland J et al (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70:3526–3536

    Article  PubMed  CAS  Google Scholar 

  46. Ito N, Eto M, Nakamura E et al (2007) STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J Clin Oncol 25:2785–2791

    Article  PubMed  CAS  Google Scholar 

  47. Ko JS, Zea AH, Rini BI et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  PubMed  CAS  Google Scholar 

  48. Horiguchi A, Asano T, Kuroda K et al (2010) STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 102:1592–1599

    Article  PubMed  CAS  Google Scholar 

  49. James C, Ugo V, Le Couedic J-P et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148

    Article  PubMed  CAS  Google Scholar 

  50. Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468

    Article  PubMed  CAS  Google Scholar 

  51. Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127

    Article  PubMed  CAS  Google Scholar 

  52. Pardanani, A., J. R. Gotlib, et al. (2011). “Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis.” J Clin Oncol 29(7): 789–796.

    Google Scholar 

  53. Hedvat M, Huszar D, Herrmann A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  PubMed  CAS  Google Scholar 

  54. Okamoto M, Lee C, Oyasu R (1997) Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 57:141–146

    PubMed  CAS  Google Scholar 

  55. NCT01112397: a phase I, open-label, multi-center, dose-escalation study to assess the safety and tolerability, and pharmacokinetics of AZD1480 administered as daily oral monotherapy or in combination with docetaxel in patients with advanced solid malignancies. http://www.clinicaltrials.gov. Accessed 21 May 2011

  56. Mariño-Enríquez A, Ou W-B, Weldon CB, Fletcher JA, Pérez-Atayde AR (2011) ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer 50:146–153

    Article  PubMed  Google Scholar 

  57. Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ (2000) Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19:3309–3320

    Article  PubMed  CAS  Google Scholar 

  58. Dudka AA, Sweet SM, Heath JK (2010) Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res 70:3391–3401

    Article  PubMed  CAS  Google Scholar 

  59. Tsimafeyeu I, Demidov L, Stepanova E, Wynn N, Ta H (2011) Overexpression of fibroblast growth factor receptors FGFR1 and FGFR2 in renal cell carcinoma. Scand Urol Nephrol 45:190–195

    Article  Google Scholar 

  60. Cascone T, Herynk MH, Xu L et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121:1313–1328

    Article  PubMed  CAS  Google Scholar 

  61. NCT01223027: an open-label, randomized, multi-center, phase III study to compare the safety and efficacy of TKI258 versus sorafenib in patients with metastatic renal cell carcinoma after failure of anti-angiogenic (VEGF-targeted and mTOR inhibitor) therapies. http://www.clinicaltrials.gov. Accessed 19 Mar 2011

  62. Cai ZW, Zhang Y, Borzilleri RM et al (2008) Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chem 51:1976–1980

    Article  PubMed  CAS  Google Scholar 

  63. Bhide RS, Lombardo LJ, Hunt JT et al (2010) The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases. Mol Cancer Ther 9:369–378

    Article  PubMed  CAS  Google Scholar 

  64. Huynh H, Ngo VC, Fargnoli J et al (2008) Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res 14:6146–6153

    Article  PubMed  CAS  Google Scholar 

  65. NCT00858871: a randomized, double-blind, multi-center phase III study of brivanib versus sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma. http://www.clinicaltrials.gov. Accessed 24 May 2011

  66. NCT01253668: brivanib (BMS-582664, brivanib alaninate) in treatment of refractory metastatic renal cell carcinoma – a phase II pharmacodynamic and baseline biomarker study. http://www.clinicaltrials.gov. Accessed 24 May 2011

  67. Thompson RH, Dong H, Lohse CM et al (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13:1757–1761

    Article  PubMed  CAS  Google Scholar 

  68. Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  PubMed  CAS  Google Scholar 

  69. NCT01354431: a randomized, blinded, phase 2 dose-ranging study of BMS-936558 (MDX-1106) in subjects with progressive, advanced/metastatic clear-cell renal cell carcinoma who have received prior anti-angiogenic therapy. http://www.clinicaltrials.gov. Accessed 21 May 2011

  70. Thompson RH, Gillett MD, Cheville JC et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179

    Article  PubMed  CAS  Google Scholar 

  71. Cozar JM, Romero JM, Aptsiauri N et al (2007) High incidence of CTLA-4 AA (CT60) polymorphism in renal cell cancer. Hum Immunol 68:698–704

    Article  PubMed  CAS  Google Scholar 

  72. Ipilimumab Approval Notice. http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm248478.htm. Accessed 21 May 2011

  73. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  74. Yang JC, Hughes M, Kammula U et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30:825–830

    Article  PubMed  CAS  Google Scholar 

  75. Rini BI, Stein M, Shannon P et al (2011) Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117:758–767

    Article  PubMed  CAS  Google Scholar 

  76. Hu-Lowe DD, Zou HY, Grazzini ML et al (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14:7272–7283

    Article  PubMed  CAS  Google Scholar 

  77. Rini BI, Escudier B, Tomczak P et al (2011) Axitinib versus sorafenib as second-line therapy for metastatic renal cell carcinoma (mRCC): Results of phase III AXIS trial. J Clin Oncol 29(suppl):abstr 4547

    Google Scholar 

  78. Förster R, Schubel A, Breitfeld D et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  PubMed  Google Scholar 

  79. Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  80. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311

    Article  PubMed  CAS  Google Scholar 

  81. Struckmann K, Mertz KD, Steu S et al (2008) pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol 214:464–471

    Article  PubMed  CAS  Google Scholar 

  82. D’Alterio C, Consales C, Polimeno M et al (2010) Concomitant CXCR4 and CXCR7 expression predicts poor prognosis in renal cancer. Curr Cancer Drug Targets 10:772–781

    Article  PubMed  Google Scholar 

  83. FDA Approval for Plerixafor. http://www.cancer.gov/cancertopics/druginfo/fda-plerixafor. Accessed 26 May 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Kumar Pal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pal, S.K., Reckamp, K., Yu, H., Figlin, R.A., Figlin, R.A., Figlin, R.A. (2012). Characterizing and Modulating the Tumor Microenvironment in Renal Cell Carcinoma: Potential Therapeutic Strategies. In: Figlin, R., Rathmell, W., Rini, B. (eds) Renal Cell Carcinoma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2400-0_11

Download citation

Publish with us

Policies and ethics