Skip to main content

Chiral Pesticides: Identification, Description, and Environmental Implications

  • Chapter
  • First Online:
Book cover Reviews of Environmental Contamination and Toxicology Volume 217

Abstract

Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advanced Chemistry Development, Inc. (1994–2010) Toronto, Canada, ChemSketch. ver 12.01

    Google Scholar 

  • Advanced Chemistry Development, Inc. (1997–2010) Toronto, Canada, ChirBase (LC/GC/CE). ver 12.01

    Google Scholar 

  • Ariëns EJ (1989) Racemates—an impediment in the use of drugs and agrochemicals. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood Limited, Chichester, pp 31–68

    Google Scholar 

  • Berkman CE, Quinn DA, Thompson CM (1993) Interaction of acetylcholinesterase with the enantiomers of malaoxon and isomalathion. Chem Res Toxicol 6:724–730

    Article  CAS  Google Scholar 

  • Bethan B, Bester K, Hühnerfuss H, Rimkus G (1997) Bromocyclen contamination of surface water, waste water and fish from northern Germany, and gas chromatographic chiral separation. Chemosphere 34:2271–2280

    Article  CAS  Google Scholar 

  • Bicchi C, Cravotto G, D’Amato A, Rubiolo P, Galli A, Galli M (1999) Cyclodextrin derivatives in gas chromatographic separation of racemates with different volatility. Part XV: 6-O-t-butyldimethylsilyl versus 6-O-t-hexyldimethylsilyl-β and γ-derivatives. J Microcolumn Sep 11:487–500

    Article  CAS  Google Scholar 

  • Borden JH, Chong J, McLean JA, Slessor KN, Mori K (1976) Gnathotrichus sulcatus: synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192:894–896

    Article  CAS  Google Scholar 

  • Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR (1987) Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pest Sci 21:253–267

    Article  CAS  Google Scholar 

  • Buser HP, Francotte E (1997) Stereoselective analysis in crop protection. In: Ahuja S (ed) Chiral separations: applications and technology. American Chemical Society, Washington, pp 93–138

    Google Scholar 

  • Buser HR, Poiger T, Müller MD (2000) Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ Sci Technol 34:2690–2696

    Article  CAS  Google Scholar 

  • Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5:385–415

    Article  CAS  Google Scholar 

  • CambridgeSoft (1986–2007) Cambridge, MA, ChemBioDraw Ultra. ver 11.0.1

    Google Scholar 

  • CambridgeSoft (2010) ChemBioFinder.com Scientific Database Gateway. http://chembiofinder.cambridgesoft.com/chembiofinder/Forms/Home/ContentArea/Home.aspx. Accessed on March 2009

  • Carle PR, Colas R, Delabarre M, Escuret P, Fourcaud A, Fulconis P, Glomot R, Hervé JJ, L’Hotellier M, Lhoste J, Nominé G, Pastre P, Piedallu C, Roa L, Scheid JP, Tessier J (1982) Deltamethrin. Roussel-Uclaf, p 412

    Google Scholar 

  • Chamberlain K, Matsuo N, Kaneko H, Khambay BPS (1998) Pyrethroids. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 9–84

    Google Scholar 

  • Chemical Computing Group, Inc. (2010) Montreal, Canada, Molecular operating environment. ver 2010.10

    Google Scholar 

  • Clark T, Deas AHB (1985) Separation of enantiomers of fungicides and some analogues by capillary gas chromatography using Chirasil Val. J Chromatogr 329:181–185

    Article  CAS  Google Scholar 

  • De Vries JX, Völker U (1989) Separation of the enantiomers of phenprocoumon and warfarin by high-performance liquid chromatography using a chiral stationary phase. Determination of the enantiomeric ratio of phenprocoumon in plasma and urine. J Chromatogr 493:149–156

    Article  Google Scholar 

  • Deas AHB, Carter GA, Clark T, Clifford DR, James CS (1986) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi III. Relationship with sensitivity to triadimefon. Pest Biochem Physiol 26:10–21

    Article  CAS  Google Scholar 

  • Deas AHB, Clark T, Carter GA (1984a) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi. Part I: Influence of dose and time of incubation. Pest Sci 15:63–70

    Article  CAS  Google Scholar 

  • Deas AHB, Clark T, Carter GA (1984b) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi. Part II: Differences between fungal species. Pest Sci 15:71–77

    Article  CAS  Google Scholar 

  • Eble JN, West BD, Link KP (1966) A comparison of the isomers of warfarin. Biochem Pharmacol 15:1003–1006

    Article  CAS  Google Scholar 

  • Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley, New York, p 1267

    Google Scholar 

  • EPA Pesticides Customer Service (2011) Ticket #23002-242301 response sent. Email to Ulrich EM on 30 July 2011

    Google Scholar 

  • Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  CAS  Google Scholar 

  • Fuchs A (1988) Implications of stereoisomerism in agricultural fungicides. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: Biological and chemical problems. Elsevier, Amsterdam, pp 203–262

    Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p,p′-DDT and the enantiomers of o,p′-DDT. Environ Sci Technol 34:1663–1670

    Article  CAS  Google Scholar 

  • Haga T, Crosby KE, Schussler JR, Palmer CJ, Yoshii H, Kimura F (1998) Aryloxyphenoxypropanoate herbicides. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 175–197

    Google Scholar 

  • Heeb NV, Bernd Schweizer W, Mattrel P, Haag R, Kohler M (2007) Crystal structure analysis of enantiomerically pure (+) and (−) [beta]-hexabromocyclododecanes. Chemosphere 66:1590–1594

    Article  CAS  Google Scholar 

  • Hirashima A, Ishaaya I, Ueno R, Ichiyama Y, Wu SY, Eto M (1989) Biological activity of optically active salithion and salioxon. Agric Biol Chem 53:175–178

    Article  CAS  Google Scholar 

  • Hühnerfuss H, Shah MR (2009) Enantioselective chromatography—a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental pollutants. J Chromatogr A 1216:481–502

    Article  Google Scholar 

  • IUPAC (2006) IUPAC gold book. http://goldbook.iupac.org/. Accessed on March 2011

  • Kallenborn R, Hühnerfuss H (2001) Chiral environmental pollutants: trace analysis and ecotoxicology. Springer, Berlin, p 209

    Google Scholar 

  • Kohler HPE, Nickel K, Bunk M, Zipper C (1998) Microbial transformation of the chiral pollutants mecoprop and dichlorprop—the necessity of considering stereochemistry. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Plenum, New York, pp 13–20

    Google Scholar 

  • Konwick BJ, Fisk AT, Garrison AW, Avants JK, Black MC (2005) Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to ceriodaphnia dubia. Environ Toxicol Chem 24:2350–2355

    Article  CAS  Google Scholar 

  • Koppenhoefer B, Graf R, Holzschuh H, Nothdurft A, Trettin U, Piras P, Roussel C (1994) CHIRBASE, a molecular database for the separation of enantiomers by chromatography. J Chromatogr 666:557–563

    Article  CAS  Google Scholar 

  • Koppenhoefer B, Nothdurft A, Pierrot-Sanders J, Piras P, Popescu C, Roussel C, Stiebler M, Trettin U (1993) CHIRBASE, a graphical molecular database on the separation of enantiomers by liquid-, supercritical fluid-, and gas chromatography. Chirality 5:213–219

    Article  CAS  Google Scholar 

  • Kurihara N, Miyamoto J, Paulson GD, Zeeh B, Skidmore MW, Hollingworth RM, Kuiper HA (1997) Chirality in synthetic agrochemicals: bioactivity and safety consideration. Pure Appl Chem 69:2007–2025

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB, Stroud JL, Bidleman T, Semple KT, Jantunen L, Jones KC (2007) Enantioselective degradation of organochlorine pesticides in background soils: variability in field and laboratory studies. Environ Sci Technol 41:4965–4971

    Article  CAS  Google Scholar 

  • Lee PW, Allahyari R, Fukuto TR (1978) Studies on the chiral isomers of fonofos and fonofos oxon: II. In vitro metabolism. Pest Biochem Physiol 8:158–169

    Article  CAS  Google Scholar 

  • Liu W, Qin S, Gan J (2005) Chiral stability of synthetic pyrethroid insecticides. J Agric Food Chem 53:3814–3820

    Article  CAS  Google Scholar 

  • Mann PJ (2006) The e-pesticide manual. ver 4.0.

    Google Scholar 

  • Mislow K (1965) Introduction to stereochemistry. W.A. Benjamin, Inc., New York, p 193

    Google Scholar 

  • Mori K (1997) Pheromones: synthesis and bioactivity. Chem Commun 13:1153–1158

    Article  Google Scholar 

  • Müller MD, Buser HR (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides. Environ Sci Technol 31:1953–1959

    Article  Google Scholar 

  • Müller RH, Babel W (1999) Separation of two dichlorprop/α-ketoglutarate dioxygenases with enantiospecific properties from Comamonas acidovorans MC1. Acta Biotechnol 19:349–355

    Article  Google Scholar 

  • Müller TA, Kohler HPE (2004) Chirality of pollutants—effects on metabolism and fate. Appl Microbiol Biotechnol 64:300–316

    Article  Google Scholar 

  • Mustaparta H, Angst ME, Lanier GN (1980) Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol in two species of Ips. J Chem Ecol 6:689–701

    Article  CAS  Google Scholar 

  • Naber JD, van Rensen JJS (1988) The role of stereoselectivity in the action of herbicides and other pesticides. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: biological and chemical problems. Elsevier, Amsterdam, pp 263–287

    Google Scholar 

  • Nasipuri D (1991) Stereochemistry of organic compounds: principles and applications. Wiley, New York, p 585

    Google Scholar 

  • Nickel K, Suter MJF, Kohler HPE (1997) Involvement of two α-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH. J Bacteriol 179:6674–6679

    CAS  Google Scholar 

  • Nomeir AA, Dauterman WC (1979) Studies on the optical isomers of EPN and EPNO. Pestic Biochem Physiol 10:121–127

    Article  CAS  Google Scholar 

  • Park BK (1988) Warfarin: metabolism and mode of action. Biochem Pharmacol 37:19–27

    Article  CAS  Google Scholar 

  • Payne TL, Richerson JV, Dickens JC, West JR, Mori K, Berisford CW, Hedden RL, Vité JP, Blum MS (1982) Southern pine beetle: olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. J Chem Ecol 8:873–881

    Article  CAS  Google Scholar 

  • Qin S, Gan J (2007) Abiotic enantiomerization of permethrin and cypermethrin: effects of organic solvents. J Agric Food Chem 55:5734–5739

    Article  CAS  Google Scholar 

  • Ridal JJ, Bidleman TF, Kerman B, Fox ME, Strachan WMJ (1997) Enantiomers of alpha-HCH as tracers of air-water gas exchange in Lake Ontario. Environ Sci Technol 31:1940–1945

    Article  CAS  Google Scholar 

  • Royal Society of Chemistry (2008) ChemSpider—database of chemical structures and property predictions. http://www.chemspider.com/. Access on March 2011

  • Ruzo LO, Holmstead RL, Casida JE (1977) Pyrethroid photochemistry: decamethrin. J Agric Food Chem 25:1385–1394

    Article  CAS  Google Scholar 

  • Sasaki M (1998) Importance of chirality in organophosphorus agrochemicals. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 85–139

    Google Scholar 

  • Stanley JK, Brooks BW (2009) Perspectives on ecological risk assessment of chiral compounds. Integr Environ Assess Manage 5:364–373

    Article  CAS  Google Scholar 

  • Tang W, Muderawan IW, Ong TT, Ng SC (2005) Enantioseparation of acidic enantiomers in capillary electrophoresis using a novel single-isomer of positively charged β-cyclodextrin: mono-6A-N-pentylammonium-6A-deoxy-β-cyclodextrin chloride. J Chromatogr A 1091:152–157

    Article  CAS  Google Scholar 

  • Ulrich EM, Hites RA (1998) Enantiomeric ratios of chlordane-related compounds in air near the Great Lakes. Environ Sci Technol 32:1870–1874

    Article  CAS  Google Scholar 

  • Vetter W (1993) Toxaphene. Theoretical aspects of the distribution of chlorinated bornanes including symmetrical aspects. Chemosphere 26:1079–1084

    Article  CAS  Google Scholar 

  • Vetter W, Bartha R, Stern G, Tomy G (1999) Enantioselective determination of two persistent chlorobornane congeners in sediment from a toxaphene treated Yukon lake. Environ Toxicol Chem 18:2775–2781

    Article  CAS  Google Scholar 

  • Vetter W, Klobes U, Hummert K, Luckas B (1997) Gas chromatographic separation of chiral organochlorines on modified cyclodextrin phases and results of marine biota samples. J High Resol Chromatogr 20:85–93

    Article  CAS  Google Scholar 

  • Vijverberg HPM, Oortgiesen M (1988) Steric structure and action of pyrethroids. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: biological and chemical problems. Elsevier, Amsterdam, pp 151–182

    Google Scholar 

  • Vité JP, Hedden R, Mori K (1976) Ips grandicollis: field response to the optically pure pheromone. Naturwissenschaften 63:43–44

    Article  Google Scholar 

  • Wade LG (1991) Stereochemistry: organic chemistry. Prentice Hall, Englewood Cliffs, pp 223–276

    Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2206

    Article  CAS  Google Scholar 

  • Williams A (1992) Agrochemical chirality. Managing Resources Ltd., London, p 95

    Google Scholar 

  • Williams A (1996) Review- Opportunities for chiral agrochemicals. Pest Sci 46:3–9

    Article  CAS  Google Scholar 

  • Williams A (1997) Chiral pesticides. Pest Outlook 8:15–19

    CAS  Google Scholar 

  • Wood A (1995–2010) Compendium of Pesticide Common Names. http://www.alanwood.net/pesticides/. Access on March 2011

  • Wood DL, Browne LE, Ewing B, Lindahl K, Bedard WD, Tilden PE, Mori K, Pitman GB, Hughes PR (1976) Western pine beetle: Specificty among enantiomers of male and female components of an attractant pheromone. Science 192:896–898

    Article  CAS  Google Scholar 

  • Zipper C, Bunk M, Zehnder AJB, Kohler HPE (1998) Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180:3368–3374

    CAS  Google Scholar 

  • Zipper C, Nickel K, Angst W, Kohler HPE (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322

    CAS  Google Scholar 

Download references

Acknowledgments and Disclaimer

The authors wish to thank Wayne Garrison (US EPA) and Steve McCall (BASF Corp.) for valuable technical review comments. This review was conceived during a National Research Council postdoctoral fellowship (E.M.U.) with financial support provided by the USGS Toxic Substances Hydrology and National Water-Quality Assessment Programs. The United States Environmental Protection Agency through its Office of Research and Development funded and managed additional research under contract number EP08D000135 (C.N.M.). This document has been subjected to review and approved for publication by the US EPA and USGS. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elin M. Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ulrich, E.M., Morrison, C.N., Goldsmith, M.R., Foreman, W.T. (2012). Chiral Pesticides: Identification, Description, and Environmental Implications. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 217. Reviews of Environmental Contamination and Toxicology, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2329-4_1

Download citation

Publish with us

Policies and ethics