Skip to main content

Travel-Time Based Reactive Transport Modeling for In Situ Subsurface Reactor

  • Chapter
  • First Online:
Delivery and Mixing in the Subsurface

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 4))

Abstract

Engineered in situ bioremediation of contaminated groundwater often uses multiple-well systems consisting of extraction and injection wells to create subsurface in situ reactors acting as treatment zones. Contaminated groundwater from the capture zone is withdrawn by the extraction well and then, mixed with additives, is returned through the injection well into the recirculation and release zones, where reactions occur. In order to design such in situ reactor systems and evaluate their performance, efficient and practical modeling tools are needed for simulating subsurface flow and bioreactive transport. This chapter describes a practical and efficient travel-time based approach for simulating reactive transport in such engineered remediation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellin A, Rubin Y. 2004. On the use of peak concentration arrival times for the inference of hydrogeological parameters. Water Resour Res 40:W07401.

    Article  Google Scholar 

  • Berkowitz B, Scher H. 1997. Anomalous transport in random fracture networks. Phys Rev Lett 79:4038–4041.

    Article  CAS  Google Scholar 

  • Berkowitz B, Scher H. 1998. Theory of anomalous chemical transport in random fracture networks. Phys Rev E 57:5858–5869.

    Article  CAS  Google Scholar 

  • Berkowitz B, Scher H, Silliman SE. 2000. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res 36:149–158.

    Article  Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys, 44:RG2003.

    Article  Google Scholar 

  • Carrera J, Sanchez-Vila X, Benet I, Medina A, Galarza G, Guimera J. 1998. On matrix diffusion: Formulations, solution methods and qualitative effects. Hydrogeol J 6:178–190.

    Article  Google Scholar 

  • Cirpka OA, Kitanidis PK. 2000a. An advective-dispersive streamtube approach for the transfer of conservative tracer data to reactive transport. Water Resour Res 36:1209–1220.

    Article  Google Scholar 

  • Cirpka OA, Kitanidis PK. 2000b. Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour Res 36:1221–1236.

    Article  Google Scholar 

  • Cirpka OA, Kitanidis PK. 2001. Travel-time based model of bioremediation using circulation wells. Ground Water 39:422–432.

    Article  CAS  Google Scholar 

  • Chilakapati A, Yabusaki S. 1999. Nonlinear reactions and nonuniform flows. Water Resour Res 35:2427–2438.

    Article  Google Scholar 

  • Christ JA, Goltz MN, Huang JQ. 1999. Development and application of an analytical model to aid design and implementation of in situ remediation technologies. J Contam Hydrol 37:295–317.

    Article  CAS  Google Scholar 

  • Crane MJ, Blunt MJ. 1999. Streamline-based simulation of solute transport. Water Resour Res 35:3061–3078.

    Article  Google Scholar 

  • Cunningham JA, Reinhard M. 2002. Injection-extraction treatment well pairs: An alternative to permeable reactive barriers. Ground Water 40:599–607.

    Article  CAS  Google Scholar 

  • Cvetkovic VD, Dagan D. 1994. Transport of kinetically sorbing solute by steady random velocity in heterogeneous porous formations. J Fluid Mech 265:189–215.

    Article  CAS  Google Scholar 

  • Cvetkovic VD, Dagan G, Cheng H. 1998. Contaminant transport in aquifers with spatially variable hydraulic and sorption properties. Proc Royalty Soc London A 454:2173–2207.

    Article  CAS  Google Scholar 

  • Di Donato G, Blunt MJ. 2004. Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs. Water Resour Res 40:W04203.

    Article  Google Scholar 

  • Di Donato G, Obi EO, Blunt MJ. 2003. Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophys Res Lett 30:1608.

    Article  Google Scholar 

  • Fienen MN, Luo J, Kitanidis PK. 2005. Semi-analytical, homogeneous, anisotropic capture zone delineation. J Hydrol 312:39–50.

    Article  Google Scholar 

  • Fienen MN, Luo J, Kitanidis PK. 2006. A bayesian geostatistical transfer function approach to tracer test analysis. Water Resour Res 42:W07426.

    Article  Google Scholar 

  • Fiori A, Jankovic I, Dagan G. 2006. Modeling flow and transport in highly heterogeneous three-dimensional aquifers: Ergodicity, Gaussianity, and anomalous behavior – 2 Approximate semianalytical solution. Water Resour Res, 42:W06D13.

    Article  Google Scholar 

  • Gandhi RK, Hopkins GD, Goltz MN, Gorelick SM, McCarty PL. 2002. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater, 1: Dynamics of a recirculating well system. Water Resour Res 38:10.1029/2001 WR000380.

    Google Scholar 

  • Ginn TR. 2001. Stochastic-convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intra-streamtube dispersion. J Contam Hydrol 47:1–28.

    Article  CAS  Google Scholar 

  • Ginn TR, Simmons CS, Wood BD. 1995. Stochastic-convective transport with nonlinear reaction: Biodegradation with microbial growth. Water Resour Res 31:2689–2700.

    Article  CAS  Google Scholar 

  • Ginn TR, Murphy EM, Chilakapati A, Seeboonruang U. 2001. Stochastic-convective transport with nonlinear reaction and mixing: Application to intermediate-scale experiments in aerobic biodegradation in saturated porous media. J Contam Hydrol 48:121–149.

    Article  CAS  Google Scholar 

  • Gong R, Lu C, Wu W-M, Carley J, Cheng H, Watson D, Criddle CS, Kitanidis PK, Jardine PM, Luo J. 2011, Estimating reaction rate coefficients within a travel-time modeling framework. Ground Water 49:209–218.

    Article  CAS  Google Scholar 

  • Hyndman DW, Dybas MJ, Forney L, Heine R, Mayotte T, Phanikumar MS, Tatara G, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Criddle CS. 2000. Hydraulic characterization and design of a full-scale biocurtain. Ground Water 38:462–474.

    Article  CAS  Google Scholar 

  • Janssen G, Cirpka OA, van der Zee SEATM. 2006. Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour Res 42:W01417.

    Article  Google Scholar 

  • Luo J, Cirpka OA. 2008. Travel-time based descriptions of transport and mixing in heterogeneous domains. Water Resour Res 44: W09407.

    Article  Google Scholar 

  • Luo J, Kitanidis PK. 2004. Fluid residence times within a recirculation zone created by an extraction-injection well pair. J Hydrol 295:149–162.

    Article  Google Scholar 

  • Luo J, Cirpka OA, Fienen MN, Wu WM, Mehlhorn TL, Carley J, Jardine PM, Criddle CS, Kitanidis PK. 2006a. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow. J Contam Hydrol 83:27–41.

    Article  CAS  Google Scholar 

  • Luo J, Wu W-M, Fienen MN, Jardine PM, Mehlhorn TL, Watson DB, Cirpka OA, Criddle CS, Kitanidis PK. 2006b. A nested-cell approach for in situ remediation. Ground Water 44:266–274.

    Article  CAS  Google Scholar 

  • Luo J, Weber F-A, Cirpka OA, Wu W-M, Carley J, Nyman J, Jardine P, Criddle CS, Kitanidis PK. 2007a. Modeling in-situ U(VI) bioreduction by sulfate-reducing bacteria. J Contam Hydrol 92:129–148.

    Article  CAS  Google Scholar 

  • Luo J, Wu W-M, Carley J, Ruan C, Gu B, Jardines PM, Criddle CS, Kitanidis PK. 2007b. Hydraulic performance analysis of a multiple injection-extraction well system. J Hydrol 336:294–302.

    Article  Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ. 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100.

    Article  CAS  Google Scholar 

  • Nauman EB, Buffham BA. 1983. Mixing in Continuous Flow System. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Obi EO, Blunt MJ. 2004. Streamline-based simulation of advective-dispersive solute transport. Adv Water Resour 27:913–924.

    Article  Google Scholar 

  • Pollock DW. 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26:743–750.

    Article  CAS  Google Scholar 

  • Reimus PW, Haga MJ, Adams AI, Callahan TJ, Turin HJ, Counce DA. 2003. Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests. J Contam Hydrol 62:613–636.

    Article  Google Scholar 

  • Robinson BA, Viswanathan HS. 2003. Application of the theory of micromixing to groundwater reactive transport models. Water Resour Res 39:1313.

    Article  Google Scholar 

  • Rubin Y, Ezzeddine S. 1997. The travel times of solutes at the Cape Cod tracer experiment: Data analysis, and structural parameter inference: Theory and unconditional numerical simulations. Water Resour Res 26:691–701.

    Article  Google Scholar 

  • Sanchez-Vila X, Rubin Y. 2003. Travel time moments for sorbing solutes in heterogeneous domains under nonuniform flow conditions. Water Resour Res 39:1086.

    Article  Google Scholar 

  • Sardin M, Schweich D, Leij FJ, van Genuchten MT. 1991. Modeling the nonequilibrium transport of linearly interacting solutes in porous media: A review. Water Resour Res 27:2287–2307.

    Article  CAS  Google Scholar 

  • Selroos JO, Cvetkovic V. 1992. Modeling solute advection coupled with sorption kinetics in heterogenous formations. Water Resour Res 28:1271–1278.

    Article  CAS  Google Scholar 

  • Semprini L, McCarty PL. 1991. Comparison between model simulation on field results for in-situ biorestoration of chlorinated aliphatics: Part 1. Biostimulation of the methanotrophic bacteria. Ground Water 29:365–374.

    Article  CAS  Google Scholar 

  • Shapiro AM, Cvetkovic VD. 1988. Stochastic-analysis of solute arrival time in heterogeneous porous-media. Water Resour Res 24:1711–1718.

    Article  Google Scholar 

  • Shapiro AM, Cvetkovic VD. 1990. Mass arrival of sorptive solute in heterogeneous porous-media. Water Resour Res 26:2057–2067.

    Article  Google Scholar 

  • Simic E, Destouni G. 1991. Water and solute residence times in a catchment: Stochastic-mechanistic model interpretation of 180 transport. Water Resour Res 35:2109–2119.

    Article  Google Scholar 

  • Simmons CS. 1982. A stochastic-convective transport representation of dispersion in one-dimensional porous-media systems. Water Resour Res 18:1193–1214.

    Article  Google Scholar 

  • Simmons CS, Ginn T, Wood B. 1995. Stochastic-convective transport with nonlinear reaction: Mathematical framework. Water Resour Res 31:2675–2688.

    Article  CAS  Google Scholar 

  • Strack ODL. 1989. Groundwater Mechanics. Prentice-Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Valocchi AJ, Malmstead M. 1992. Accuracy of operator splitting for advection-dispersion -reaction problems. Water Resour Res 28: 1471–1476.

    Article  CAS  Google Scholar 

  • van der Zee SEATM, van Riemsdijk WH. 1987. Transport of reactive solutes in spatially variable soil systems. Water Resour Res 23:2059–2069.

    Article  Google Scholar 

  • Villermaux J. 1987. Chemical-engineering approach to dynamic modeling of linear chromatography – A flexible method for representing complex phenomena from simple concepts. J Chromatogr 406:11–26.

    Article  CAS  Google Scholar 

  • Weber F-A. 2002. Reactive transport modeling: stimulation of microbial uranium(VI) reduction for remediation of a contaminated aquifer. MS Thesis. University of Stuttgart, Germany.

    Google Scholar 

  • Wu W, Carley J, Fienen MN, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka OA, Kitanidis PK, Jardine PM, Criddle CS. 2006a. Pilot-scale bioremedation of uranium in a highly contaminated aquifer I: Conditioning of a treatment zone. Environ Sci Technol 40:3978–3985.

    Article  CAS  Google Scholar 

  • Wu W, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA, Fendorf S, Zhou J, Kitanidis P, Jardine PM, Criddle CS. 2006b. Pilot-scale bioremediation of uranium in a highly contaminated aquifer II: Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995.

    Article  CAS  Google Scholar 

  • Zheng C, Bennett G. 2002. Applied Contaminant Transport Modeling, Theory and Practice. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Zwietering TN. 1959. The degree of mixing in continuous flow systems. Chem Eng Sci 11:1–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luo, J. (2012). Travel-Time Based Reactive Transport Modeling for In Situ Subsurface Reactor. In: Kitanidis, P., McCarty, P. (eds) Delivery and Mixing in the Subsurface. SERDP ESTCP Environmental Remediation Technology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2239-6_5

Download citation

Publish with us

Policies and ethics