Skip to main content

Chemical and Biological Processes: The Need for Mixing

  • Chapter
  • First Online:
Delivery and Mixing in the Subsurface

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 4))

Abstract

Except for spontaneous reactions such as radioactive decay, chemical transformations often require that two or more substances be brought together for the transformation to occur. Examples of particular interest in groundwater are oxidations of inorganic or organic species, which require the presence of some oxidant, such as diatomic oxygen (O2), nitrate, sulfate, or ferric iron (Fe(III)). In biological reactions, three entities generally are required, the compound being oxidized (electron donor), the oxidant (electron acceptor), and the microorganism carrying out the transformation. At times, the required entities are already present together, and then transformation occurs based simply on normal reaction kinetics. However, this is often not the case in groundwater remediation, and then the missing reactants must be supplied through some means and mixed with the substance or substances targeted for removal. The speed of the reaction is then likely to be governed primarily by the rate at which the required substances can be brought together. Natural attenuation for transformation of materials may require mixing brought about by the diffusion of oxygen into an aquifer from the vadose zone above, or from an adjacent groundwater flow stream. The process of adding and mixing needed substances for desired transformation is one of the most challenging and costly aspects of in situ remediation of contaminated groundwater and soil. This is a much more difficult process than with an aboveground reactor because of complex and often undefined hydrogeology and the general uncertainty of the exact location of the contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul AS, Gibson TL, Rai DN. 1990. Selection of surfactants for the removal of petroleum products from shallow sandy aquifers. Ground Water 28:920–926.

    Article  CAS  Google Scholar 

  • Abriola LM, Drummond CD, Hahn EJ, Hayes KF, Kibbey TCG, Lemke LD, Pennell KD, Petrovskis EA, Ramsburg CA, Rathfelder KM. 2005. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design. Environ Sci Technol 39:1778–1790.

    Article  CAS  Google Scholar 

  • Augustijn DCM, Jessup RE, Rao PSC, Wood AL. 1994. Remediation of contaminated soils by solvent flushing. J Environ Eng 120:42–57.

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis DF. 1986. Biochemical Engineering Fundamentals. McGraw-Hill Companies, Inc., New York, NY, USA. 984 p.

    Google Scholar 

  • Benjamin MM. 2002. Water Chemistry. McGraw-Hill Companies, Inc., New York, NY, USA. 668 p.

    Google Scholar 

  • Cantrell KJ, Kaplan DI. 1997. Zero-valent iron colloid emplacement in sand columns. J Environ Eng 123:499–505.

    Article  CAS  Google Scholar 

  • Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PSC, Sabatini DA, Shiau B, Szekeres E, Wood AL. 2006. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. J Contam Hydrol 82:1–22.

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U. 1996. The Iron Oxides. VCH Publishers, Weinheim, Germany. 573 p.

    Google Scholar 

  • Dean JA. 1999. Lange’s Handbook of Chemistry, 15th ed. McGraw-Hill, New York, NY, USA, pp 1521.

    Google Scholar 

  • Dybas M, Tatara G, Knoll W, Mayotte T, Criddle CS. 1995a. Niche adjustment for bioaugmentation with Pseudomonas sp. strain KC. In Hinchee RE, Frederickson J, Alleman BC, eds, Bioaugmentation for Site Remediation (Bioremediation Series 3(3)), Battelle Press, Columbus, OH, USA, pp 77–84.

    Google Scholar 

  • Dybas M, Tatara G, Criddle CS. 1995b. Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. Strain KC. Appl Environ Microbiol 61:758–762.

    CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepulveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert DC, Witt ME, Criddle CS. 1998. Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611.

    Article  CAS  Google Scholar 

  • Dybas MJ, Hyndman DW, Heine R, Linning K, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Artuz R, Criddle CS. 2002. Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644.

    Article  CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.

    Article  CAS  Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 2005. A Review of Biofouling Controls for Enhanced In Situ Bioremediation of Groundwater. ER-0429-WhtPaper.pdf. Department of Defense ESTCP, Arlington, VA, USA. 48 p. http://serdp-estcp.org/. Accessed June 14, 2011.

  • Fountain JC, Klimek A, Beikirch MG, Middleton TM. 1991. Use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. J Hazard Mater 28:295–311.

    Article  CAS  Google Scholar 

  • Gillham RW, O’Hannesin SF. 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967.

    Article  CAS  Google Scholar 

  • Gribić-Galić D, Vogel TM. 1987. Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260.

    Google Scholar 

  • Hopkins GD, McCarty PL. 1995. Field-evaluation of in-situ aerobic cometabolism of trichloroethylene and 3 dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.

    Article  CAS  Google Scholar 

  • Hyndman DW, Dybas MJ, Forney L, Heine R, Mayotte T, Phanikumar MS, Tatara G, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Criddle CS. 2000. Hydraulic characterization and design of a full-scale biocurtain. Ground Water 38:462–474.

    Article  CAS  Google Scholar 

  • Jawitz JW, Sillan RK, Annable MD, Rao PSC, Warner K. 2000. In-situ alcohol flushing of a DNAPL source zone at a dry cleaner site. Environl Sci Technol 34:3722–3729.

    Article  CAS  Google Scholar 

  • Jenal-Wanner U, McCarty PL. 1997. Development and evaluation of semicontinuous slurry microcosms to simulate in-situ biodegradation of trichloroethylene in contaminated aquifers. Environ Sci Technol 31:2915–2922.

    Article  CAS  Google Scholar 

  • Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Ac 42:547–569.

    Article  CAS  Google Scholar 

  • Lee C-H, Lewis TA, Paszczynski A, Crawford RL. 1999. Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261:562–566.

    Article  CAS  Google Scholar 

  • Leung SW, Watts RJ, Miller GC. 1992. Degradation of perchloroethylene by Fenton reagent: Speciation and pathway. J Environ Qual 21:377–381.

    Article  CAS  Google Scholar 

  • Levenspiel O. 1999. Chemical Reaction Engineering, 3rd ed. John Wiley & Sons, Inc., New York, NY, USA. 668 p.

    Google Scholar 

  • Londergan JT, Meinardus HW, Mariner PE, Jackson RE, Brown CL, Dwarakanath V, Pope GA, Ginn JS, Taffinder S. 2001. DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Ground Water Monit Remediat 21:57–67.

    Article  Google Scholar 

  • Luo J, Cirpka OA, Wu W-M, Fienen MN, Jardine PM, Mehlhorn TL, Watson DB, Criddle CS, Kitanidis PK. 2005. Mass-transfer limitations for nitrate removal in a uranium-contaminated aquifer. Environ Sci Technol 39:8453–8459.

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.

    Article  CAS  Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ. 1998a. Full-scale evaluation of in-situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100.

    Article  CAS  Google Scholar 

  • McCarty PL, Hopkins GD, Munakata-Marr J, Matheson VG, Dolan ME, Dion LB, Shields M, Forney LJ, Tiedje JM. 1998b. Bioaugmentation with Burkholderia cepacia PRI301 for in-situ bioremediation of trichloroethylene contaminated groundwater. EPA/600/S-98/001. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Gulf Breeze, FL, USA. 11 p.

    Google Scholar 

  • Morel FMM, Hering JG. 1993. Principles and Applications of Aquatic Chemistry. John Wiley & Sons, Inc., New York, NY, USA. 588 p.

    Google Scholar 

  • Mravik SC, Sillan RK, Wood AL, Sewell GW. 2003. Field evaluation of the solvent extraction residual biotreatment technology. Environ Sci Technol 37:5040–5049.

    Article  CAS  Google Scholar 

  • Munakata-Marr J, McCarty PL, Shields MS, Reagin M, Francesconi SC. 1996. Enhancement of trichloroethylene degradation in aquifer microcosms bioaugmented with wild-type and genetically altered Burkholderia (Pseudomonas) Cepacia G4 and Pr1. Environ Sci Technol 30:2045–2052.

    Article  CAS  Google Scholar 

  • Nkedikizza P, Rao PSC, Hornsby AG. 1985. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils. Environ Sci Technol 19:975–979.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 1994. Alternatives for Ground Water Cleanup. National Academies Press, Washington, DC, USA. 315 p.

    Google Scholar 

  • Nyman JL, Williams SM, Criddle CS. 2005. Bioengineering for the in-situ remediation of metals. In Grassian V, ed, Environmental Catalysis. CRC Press, Boca Raton, FL, USA, pp 493–520.

    Chapter  Google Scholar 

  • O’Hannesin SF, Gillham RW. 1998. Long-term performance of an in situ ‘iron wall’ for remediation of VOCs. Ground Water 36:164–170.

    Article  Google Scholar 

  • Pennell KD, Pope GA, Abriola LM. 1996. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environ Sci Technol 30:1328–1335.

    Article  CAS  Google Scholar 

  • Puls RW, Blowes DW, Gillham RW. 1998. Emplacement verification and long-term performance monitoring of a permeable reactive barrier at the USCG Support Center, Elizabeth City, North Carolina. IAHS Publication (International Association of Hydrological Sciences) 250:459–466. http://iahs.info/redbooks/a250/iahs_250_0459.pdf. Accessed June 16, 2011.

  • Ramsburg CA, Abriola LM, Pennell KD, Loffler FE, Gamache M, Amos BK, Petrovskis EA. 2004. Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. Environ Sci Technol 38:5902–5914.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu H-L, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP. 2005. Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. Environ Sci Technol 39:1791–1801.

    Article  CAS  Google Scholar 

  • Rao PSC, Annable MD, Sillan RK, Dai DP, Hatfield K, Graham WD, Wood AL, Enfield CG. 1997. Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation. Water Resour Res 33:2673–2686.

    Article  Google Scholar 

  • Rard JA, Rand MH, Anderegg G, Wanner H. 1999. Chemical Thermodynamics of Technicium. North-Holland by Elsevier Science, Amsterdam, The Netherlands.

    Google Scholar 

  • Rheinhard M, Curtis GP, Barbash JE. 1997. Natural chemical attenuation of halogenated hydrocarbon compounds via dehalogenation. In Ward CH, Cherry JA, Scalf MR, eds, Subsurface Restoration. Ann Arbor Press Inc., Ann Arbor, MI, USA, pp 397–409.

    Google Scholar 

  • Rittmann BE, McCarty PL. 2001. Environmental Biotechnology: Principles and Applications. McGraw-Hill, New York, NY, USA. 754 p.

    Google Scholar 

  • Sawyer CN, McCarty PL, Parkin GF. 2003. Chemistry for Environmental Engineering and Science. McGraw-Hill, New York, NY, USA. 752 p.

    Google Scholar 

  • Schnarr M, Truax C, Farquhar G, Hood E, Gonullu T, Stickney B. 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J Contam Hydrol 29:205–224.

    Article  CAS  Google Scholar 

  • Schreier CG, Reinhard M. 1995. Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water. Chemosphere 31:3475–3487.

    Article  CAS  Google Scholar 

  • Semprini L, Dolan ME, Mathias MAB, Hopkins GD, McCarty PL. 2007. Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Adv Water Resour 30:1528–1546.

    Article  CAS  Google Scholar 

  • Smith BA, Teel AL, Watts RJ. 2006. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton’s reagent. J Contam Hydrol 85:229–246.

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ. 1996. Aquatic Chemistry. John Wiley & Sons, Inc., New York, NY, USA. 1022 p.

    Google Scholar 

  • Teel AL, Watts RJ. 2002. Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189.

    Article  CAS  Google Scholar 

  • Teel AL, Warberg CR, Atkinson DA, Watts RJ. 2001. Comparison of mineral and soluble iron Fenton’s catalysts for the treatment of trichloroethylene. Water Res 35:977–984.

    Article  CAS  Google Scholar 

  • Vigon BW, Rubin AJ. 1989. Practical consideration in the surfactant-aided mobilization of contaminants in aquifers. J Water Pollut Control Fed 61:12331240.

    CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL. 1987. Transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736.

    Article  CAS  Google Scholar 

  • Wadley SLS, Gillham RW. 2003. Remediation of DNAPL source zone using granular iron: A field demonstration. Proceedings, 2003 International Symposium on Water Resources and the Urban Environment, Wuhan, China, November, pp 30–35.

    Google Scholar 

  • Weber WJ Jr, DiGiano FA. 1996. Process Dynamics in Environmental Systems. John Wiley & Sons, Inc., New York, NY, USA, 943 p.

    Google Scholar 

  • Wu W, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka OA, Kitanidis PK, Jardine PM, Criddle CS. 2006a. Pilot-scale bioremediation of uranium in a highly contaminated aquifer I: Conditioning of a treatment zone. Environ Sci Technol 40:3978–3985.

    Article  CAS  Google Scholar 

  • Wu W, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Carroll S, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Watson D, Cirpka OA. Fendorf S, Zhou J, Kitanidis PK, Jardine PM, Criddle CS. 2006b. Pilot-scale bioremediation of uranium in a highly contaminated aquifer II: Evidence of U(VI) reduction and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995.

    Article  CAS  Google Scholar 

  • Wu W, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Lou W, Fields W, Gu B, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS. 2007. In-situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41: 5716–5723.

    Article  CAS  Google Scholar 

  • Yaws CL. 1999. Chemical Properties Handbook. McGraw-Hill, New York, NY, USA. 779 p.

    Google Scholar 

  • Zhang WX, Wang CB, Lien HL. 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCarty, P.L., Criddle, C.S. (2012). Chemical and Biological Processes: The Need for Mixing. In: Kitanidis, P., McCarty, P. (eds) Delivery and Mixing in the Subsurface. SERDP ESTCP Environmental Remediation Technology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2239-6_2

Download citation

Publish with us

Policies and ethics