Skip to main content

Challenges to Therapeutic Potential of hiPSCs

  • Chapter
  • First Online:
  • 1710 Accesses

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

Abstract

In a metazoan body all cells possess the same set of genes. Exceptions for this condition are post-meiotic germ cell lines, mature lymphocytes, and cells in species that exhibit chromosome diminution. Therefore, generating a pluripotent cell in vitro and directing its conversion into a specific differentiated cell fate, which means rewinding the internal clock of any mammalian cell to an embryonic state and then forwarding this high potential cells to diseased cells, represents a rational and ongoing approach in regenerative medicine. On the other hand, quality control and safety are the main concerns and there are several technical challenges in using human iPSCs in treatment of several irreparable human diseases. To minimize or eliminate genetic alterations in the derived iPSC line creation factor-free human iPSCs are necessary. Defining a disease-relevant phenotype needs in vitro and in vivo models. Moreover, to generate markers for differentiation and gene corrections, gene-targeting strategies are necessary. Besides, cell-type specific lineage reporters, lineage-tracking tools and tools to disrupt, repair, or overexpress genes should be developed in order to model many human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Apostolou E, Hochedlinger K (2011) Stem cells: iPS cells under attack. Nature 474(7350):165–166

    Article  PubMed  CAS  Google Scholar 

  • Bryceson YT, Long EO (2008) Line of attack: NK cell specificity and integration of signals. Curr Opin Immunol 20(3):344–352

    Article  PubMed  CAS  Google Scholar 

  • Colman A, Dreesen O (2009) Pluripotent stem cells and disease modeling. Cell Stem Cell 5(3):244–247

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ et al (2009) Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 4(3):200–201; author reply 202

    Google Scholar 

  • Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  PubMed  CAS  Google Scholar 

  • Garg V et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424(6947):443–447

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK et al (2009) Physical interaction between TBX5 and MEF2C is required for early heart development. Mol Cell Biol 29(8):2205–2218

    Article  PubMed  CAS  Google Scholar 

  • Hanna JH et al (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4):508–525

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136(4):509–523

    Article  PubMed  CAS  Google Scholar 

  • Ieda M et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  PubMed  CAS  Google Scholar 

  • Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Zagrodzinska B (2001) Chromatin elimination–an oddity or a common mechanism in differentiation and development? Differentiation 68(2–3):84–91

    Article  PubMed  CAS  Google Scholar 

  • Kocaefe C et al (2010) Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Rev 6(4):512–522

    Article  PubMed  Google Scholar 

  • Lee G et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    Article  PubMed  CAS  Google Scholar 

  • Lin Q et al (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Masip M et al (2010) Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod 16(11):856–868

    Article  PubMed  CAS  Google Scholar 

  • Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394

    Article  PubMed  Google Scholar 

  • Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28(10):1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji N (2010) Banking human pluripotent stem cell lines for clinical application? J Dent Res 89(8):757–758

    Article  PubMed  CAS  Google Scholar 

  • Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    Article  PubMed  CAS  Google Scholar 

  • Raya A et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59

    Article  PubMed  CAS  Google Scholar 

  • Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5(6):584–595

    Article  PubMed  CAS  Google Scholar 

  • Swijnenburg RJ et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl):I166–I172

    PubMed  Google Scholar 

  • Tamaoki N et al (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89(8):773–778

    Article  PubMed  CAS  Google Scholar 

  • Taylor CJ et al (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 366(1575):2312–2322

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Xie H et al (2004) Stepwise reprogramming of B cells into macrophages. Cell 117(5):663–676

    Article  PubMed  CAS  Google Scholar 

  • Ye Z et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480

    Article  PubMed  CAS  Google Scholar 

  • Zhao T et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215

    PubMed  CAS  Google Scholar 

  • Zhou Q et al (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632

    Article  PubMed  CAS  Google Scholar 

  • Zhu H et al (2011) Investigating monogenic and complex diseases with pluripotent stem cells. Nat Rev Genet 12(4):266–275

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Yildirim .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Yildirim, S. (2012). Challenges to Therapeutic Potential of hiPSCs. In: Induced Pluripotent Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2206-8_6

Download citation

Publish with us

Policies and ethics