Skip to main content

The Conformon

  • Chapter
  • First Online:

Abstract

Cells are examples of self-organizing chemical reaction–diffusion systems that have evolved to perform (or been selected because of their ability to perform) myriads of goal-directed (purposive or teleonomic) motions in space and time. The goal-directed molecular motions inside the living cell are carried out by biopolymers acting as molecular machines (Alberts et al. 1998), and each molecular machine is postulated to be driven by conformons. Conformons, sequence-specific mechanical strains of biopolymers, can be generated from the binding energy of ligands as in the Circe effect of Jencks (1975) or from the free energy of chemical reactions as in stress-induced duplex destabilizations (SIDDSs) in supercoiled DNA described by Benham (1992, 1996a, b; Benham and Bi 2004). The living cell can be represented as a system of molecular machines (e.g., myosin, kinesin, dynein, dynamin, RNA polymerase, DNA polymerase, topoisomerases, and ion pumps) that are organized in space and time in various combinations in order to carry out cell functions demanded by a given environmental condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberts, B.: The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)

    Article  Google Scholar 

  • Alvarez, A., Romero, F.R., Archilla, J.F.R., Cuevas, J.A., Larsen, P.V: Breather trapping and breather transmission in a DNA model with an interface, ArXiv:nlin/0503062v3 [nlin.PS] 27 Mar (2006)

    Google Scholar 

  • Astumian, D.: The role of thermal activation in motion and force generation by molecular motors. Philos. Trans. R. Soc. Lond. B 355, 511–22 (2000)

    Article  Google Scholar 

  • Astumian, D.: Making molecules into motors. Sci. Am. 285(1), 57–64 (2001)

    Article  Google Scholar 

  • Baker, T.A., Bell, S.P.: Polymerases and the replisome: machines within machines. Cell 92, 295–305 (1998)

    Article  Google Scholar 

  • Bauer, W.R., Crick, F.H.C., White, J.H.: Supercoiled DNA. Sci. Am. 243(1), 118–133 (1980)

    Google Scholar 

  • Benham, C.J.: Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory sites. Proc. Natl. Acad. Sci. U. S. A. 90, 2999–3003 (1992)

    Article  ADS  Google Scholar 

  • Benham, C.J.: Duplex destabilization in supercoiled DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425–434 (1996a)

    Article  Google Scholar 

  • Benham, C.J.: Computation of DNA structural variability – a new predictor of DNA regulatory regions. Comput. Appl. Biosci. 12(5), 375–381 (1996b)

    Google Scholar 

  • Benham, C.J., Bi, C.: The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11(4), 519–543 (2004)

    Article  Google Scholar 

  • Boyer, P.D.: Catalytic site occupancy during ATP synthase catalysis. FEBS Lett. 512(1–3), 29–32 (2002)

    Article  ADS  Google Scholar 

  • Cheetham, G.M.T., Steitz, T.A.: Structure of a transcribing T7 RNA polymerase initiation complex. Science 286, 2305–9 (1999)

    Article  Google Scholar 

  • Crompton, M.: The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999)

    Article  Google Scholar 

  • Cuevas, J., Starikov, E.B., Archilla, J.F.R., Hennig, D.: Moving breathers in bend DNA with realistic parameters. Mod. Phys. Lett. B. 18(25), 1319–1326 (2004)

    Article  ADS  Google Scholar 

  • Domb, C.: The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena. Taylor & Francis, London (1996)

    Google Scholar 

  • Frauenfelder, H.: Function and dynamics of myoglobin. N. Y. Acad. Sci. 504, 151–167 (1987)

    Article  ADS  Google Scholar 

  • Green, D.E., Ji, S.: The electromechanochemical model of mitochondrial strucutre and funciton. In: Schulz, J., Cameron, B.F. (eds.) Molecular Basis of Electron Transport, pp. 1–44. Academic Press, New York (1972a)

    Google Scholar 

  • Green, D.E., Ji, S.: Electromechanochemical model of mitochondrial structure and function. Proc. Natl. Acad. Sci. U. S. A. 69, 726–729 (1972b)

    Article  ADS  Google Scholar 

  • Han, M.Y.: Quarks and Gluons: A Century of Particle Charges. World Scientific, Singapore (1999)

    Book  Google Scholar 

  • Hine, J.: Physical Organic Chemistry, 2nd edn, pp. 69–70. McGraw-Hill Book Company, New York (1962)

    Google Scholar 

  • Hisakado, M.: Breather trapping mechanism in piecewise homogeneous DNA. Phys. Lett. A 227(1–2), 87–93 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jablonka, E.: Genes as followers in evolution – a post-synthesis synthesis? Biol. Philos. 21, 143–154 (2006)

    Article  Google Scholar 

  • Jencks, W.: Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. 43, 219–410 (1975)

    Google Scholar 

  • Ji, S.: Energy and negentropy in enzymic catalysis. Ann. N. Y. Acad. Sci. 227, 419–437 (1974a)

    Article  ADS  Google Scholar 

  • Ji, S.: A general theory of ATP synthesis and utilization. Ann. N. Y. Acad. Sci. 227, 211–226 (1974b)

    Article  ADS  Google Scholar 

  • Ji, S.: A model of oxidative phosphorylation that accommodates the chemical intermediate, chemiosmotic, localized proton and conformational hypotheses. J. Theor. Biol. 59, 319–330 (1976)

    Article  Google Scholar 

  • Ji, S.: A possible molecular mechanism of free energy transfer in oxidative phosphorylation. J. Theor. Biol. 68, 607–612 (1977)

    Article  Google Scholar 

  • Ji, S.: The principles of ligand-protein interactions and their application to the mechanism of oxidative phosphorylation. In: Yagi, K. (ed.) Structure and Function of Biomembranes, pp. 25–37. Japan Scientific Societies Press, Tokyo (1979)

    Google Scholar 

  • Ji, S.: The bhopalator – a molecular model of the living cell based on the concepts of conformons and dissipative structures. J. Theor. Biol. 116, 399–426 (1985a)

    Article  Google Scholar 

  • Ji, S.: The Bhopalator: a molecular model of the living cell. Asian J. Exp. Sci 1, 1–33 (1985b)

    Google Scholar 

  • Ji, S.: Watson-crick and prigoginian forms of genetic information. J. Theor. Biol. 130, 239–245 (1988)

    Article  Google Scholar 

  • Ji, S.: Biocybernetics: a machine theory of biology. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 1–237. Rutgers University Press, New Brunswick (1991)

    Google Scholar 

  • Ji, S.: The linguistics of DNA: words, sentences, grammar, phonetics, and semantics. Ann. N. Y. Acad. Sci. 870, 411–417 (1999b)

    Article  ADS  Google Scholar 

  • Ji, S.: Free energy and information contents of Conformons in proteins and DNA. Biosystems 54, 107–130 (2000)

    Article  Google Scholar 

  • Ji, S.: The Bhopalator: an information/energy dual model of the living cell (II). Fundam. Inform. 49(1–3), 147–165 (2002b)

    MATH  Google Scholar 

  • Ji, S.: Molecular information theory: solving the mysteries of DNA. In: Ciobanu, G., Rozenberg, G. (eds.) Modeling in Molecular Biology, Natural Computing Series, pp. 141–150. Springer, Berlin (2004a)

    Chapter  Google Scholar 

  • Junge, W., Müller, D.J.: Seeintg a molecular motor at work. Science 333, 704–705 (2011)

    Article  ADS  Google Scholar 

  • Kapanidis, A.N., Margeat, E., Ho, S.O., Kortkhonjia, E., Weiss, S., Ebright, R.H.: Initial transcriptionby RNA polymerase proceeds through a DNA- scrunching mechanism. Science 314(5802), 1144–47 (2006)

    Article  ADS  Google Scholar 

  • Kirschner, M., Gerhart, J.: Evolvability. Proc. Natl. Acad. Sci. U. S. A. 95, 8420–8427 (1998)

    Article  ADS  Google Scholar 

  • Kirschner, M.W., Gerhart, J.C.: The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven (2005)

    Google Scholar 

  • Lumry, R.: Conformational mechanisms for free energy transduction in protein systems: old ideas and new facts. Ann. N. Y. Acad. Sci. 227, 46–73 (1974)

    Article  ADS  Google Scholar 

  • Lumry, R.: The Protein Primer, available at http://www.chem.umn.edu/groups/lumry/Volume_2_Protein_Primer/ (2009)

  • Lumry, R., Gregory, R.B.: Free-energy management in protein reactions: concepts, complications, and compensation. In: Welch, G.R. (ed.) The Fluctuating Enzymes, pp. 1–190. Wiley, New York (1986)

    Google Scholar 

  • MacLennan, D.H., Green, N.M.: Pumping ions. Nature 405, 633–634 (2000)

    Article  Google Scholar 

  • McClare, C.W.F.: Chemical machines, maxwell's demon and living organisms. J. theoret. Biol. 30, 1–34 (1971)

    Article  Google Scholar 

  • McGuffee, S.R., Elcock, A.H.: Diffusion, crowding and protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 6(3), e1000694 (2010). doi:10.1371/journal.pcbi.1000694

    Article  Google Scholar 

  • Minton, A.P.: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001)

    Article  Google Scholar 

  • Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144–148 (1961)

    Article  ADS  Google Scholar 

  • Mitchell, P.: Chemiosmotic Coupling and Energy Transduction. Glyn Research Ltd, Bodmin (1968)

    Google Scholar 

  • Myung, J., Jencks, W.P.: There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase. Biochemistry 34, 3077–3083 (1995)

    Article  Google Scholar 

  • Pattee, H.: The physics of symbols and the evolution of semiotic controls. In: Coombs M.,Sulcoski M.(eds) Proceedings of the 1996 International Workshop on Control Mechanisms for Complex Systems, Issues of Measurement & Semiotic Analysis (1996)

    Google Scholar 

  • Pattee, H.: The physics of symbols: bridging the epistemic cut. Biosystems 60, 5–12 (2001)

    Article  Google Scholar 

  • Pielak, G.J.: A model of intracellular organization. Proc. Nat. Acad. Sci. 102(17), 5901–5902 (2005)

    Article  ADS  Google Scholar 

  • Qian, H.: Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J. Phys. Chem. B 110, 15063–15074 (2006)

    Article  Google Scholar 

  • Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–42 (2007)

    Article  ADS  Google Scholar 

  • Revyakin, A., Liu, C., Ebright, R.H., Strick, T.R.: Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314(5802), 1139–43 (2006)

    Article  ADS  Google Scholar 

  • Stryer, L.: Biochemistry, 3rd edn. W. H. Freeman and Company, New York (1995)

    Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., Ogawa, H.: Crystal structure of calcium ion pump of sarcoplasmic reticulum at 2.6 Å resolutions. Nature 405, 647–55 (2000)

    Article  ADS  Google Scholar 

  • Uchihashi, T., Iino, R., Ando, T., Noji, H.: High-speed atomic force microscopy reveals rotary catalysis of Rotorless F1-ATPase. Science 333, 755–758 (2011)

    Article  ADS  Google Scholar 

  • Volkov, S.N.: Conformational breather in a DNA macromolecule. Phys. Letters A 224(1–2), 93–98 (1996)

    Article  ADS  Google Scholar 

  • von Neumann, J.: In: Burks, A.W. (ed.) Theory of Self-reproducing Automata, p. 77. University of Illinois Press, Urbana (1966)

    Google Scholar 

  • Waddington, C.H.: The Strategy of the Genes. Allen and Unwin, London (1957)

    Google Scholar 

  • West-Eberhard, M.J.: Evolution in the light of developmental and cell biology, and vice versa. Proc. Nat. Acad. Sci. USA 95, 8417–8419 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungchul Ji PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ji, S. (2012). The Conformon. In: Molecular Theory of the Living Cell. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2152-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2152-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2151-1

  • Online ISBN: 978-1-4614-2152-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics