Skip to main content

Fundamentals of Electrosurgery Part I: Principles of Radiofrequency Energy for Surgery

  • Chapter
  • First Online:
The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE)

Abstract

Radiofrequency (RF) electrosurgery used appropriately, it can allow the surgeon to perform a wide spectrum of procedures safely, effectively, and with minimal undesired tissue trauma. Used without proper care, education, and training, electrosurgery, like other instruments and energy sources, has the potential to cause excessive tissue trauma, and increased operative morbidity, sometimes of a life-threatening nature. This chapter provides the reader with a fundamental knowledge of the scientific principles of RF electrosurgery that will facilitate understanding of the systems and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cushing H, Bovie W. Electrosurgery as an aid to the removal of intracranial tumors. Surg Gynecol Obstet. 1928;47:751–84.

    Google Scholar 

  2. Major RH. History of medicine volumes I and II. Springfield: Charles C. Thomas; 1954.

    Google Scholar 

  3. Licht SH. The history of therapeutic heat. 2nd ed. New Haven: Elizabeth Licht Publications; 1965.

    Google Scholar 

  4. Geddes LA, Silva LF, Dewitt DP, Pearce JA. What’s new in electrosurgical instrumentation? Med Instrum. 1977;11:355–61.

    PubMed  CAS  Google Scholar 

  5. Stillings D. John Wesley: philosopher of electricity. Med Instrum. 1973;7:307.

    PubMed  CAS  Google Scholar 

  6. d’Arsonal A. Action physiologique des courants alternatis a grande frequence. Arch Physiol Porm Pathol. 1893;25:401.

    Google Scholar 

  7. Kelly HA, Ward GE. Electrosurgery. Philadelphia: W.B. Saunders; 1932.

    Google Scholar 

  8. Doyen E. Sur la destruction des tumeurs cancereuses accessibles: par la methode de la voltaisation bipolaire et de l’electro-coagulation thermique. Arch D’Elecetricitie et de Physiotherapie du Cancer. 1909;17:791–5.

    Google Scholar 

  9. Wyeth GA. The endoderm. Am J Electrother Radiol. 1924;42:187.

    Google Scholar 

  10. Fervers C. Die laparoskopie mit dem cystoskope. Ein beitrag zur vereinfachung der techniq und aur endoskopischen strangdurchtrennung in der bauchole. Med Klin. 1933;29:1042–5.

    Google Scholar 

  11. Power FH, Barnes AC. Sterilization by means of peritoneoscopic fulguration: a preliminary report. Am J Obstet Gynecol. 1941;41:1038–43.

    Google Scholar 

  12. Levy BS, Soderstrom RM, Dail DH. Bowel injuries during laparoscopy. Gross anatomy and histology. J Reprod Med. 1985;30:168–72.

    PubMed  CAS  Google Scholar 

  13. Frangenheim H. Laparoscopy and culdoscopy in gynaecology. London: Butterworth; 1972.

    Google Scholar 

  14. Rioux JE. Bipolar electrosurgery: a short history. J Minim Invasive Gynecol. 2007; 14:538–41.

    Article  PubMed  Google Scholar 

  15. Ohm G. Die galvanische Kette, mathematisch bearbeitet. Berlin: Riemann; 1827.

    Google Scholar 

  16. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3:212–8.

    Article  PubMed  CAS  Google Scholar 

  17. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol. 1991;53:825–35.

    PubMed  CAS  Google Scholar 

  18. Lacourse JR, Miller 3rd WT, Vogt M, Selikowitz SM. Effect of high-frequency current on nerve and muscle tissue. IEEE Trans Biomed Eng. 1985;32:82–6.

    Article  PubMed  CAS  Google Scholar 

  19. Oringer MJ. Electrosurgery in dentistry. Philadelphia: W.B. Saunders; 1975.

    Google Scholar 

  20. Munro MG, Fu YS. Loop electrosurgical excision with a laparoscopic electrode and carbon dioxide laser vaporization: comparison of thermal injury characteristics in the rat uterine horn. Am J Obstet Gynecol. 1995;172:1257–62.

    Article  PubMed  CAS  Google Scholar 

  21. Filmar S, Jetha N, McComb P, Gomel VA. A comparative histologic study on the healing process after tissue transection. I. Carbon dioxide laser and electromicrosurgery. Am J Obstet Gynecol. 1989;160:1062–7.

    Article  PubMed  CAS  Google Scholar 

  22. Soderstrom RM, Levy BS, Engel T. Reducing bipolar sterilization failures. Obstet Gynecol. 1989;74:60–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Munro, M.G. (2012). Fundamentals of Electrosurgery Part I: Principles of Radiofrequency Energy for Surgery. In: Feldman, L., Fuchshuber, P., Jones, D. (eds) The SAGES Manual on the Fundamental Use of Surgical Energy (FUSE). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2074-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2074-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2073-6

  • Online ISBN: 978-1-4614-2074-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics