Skip to main content

Properties of WCu, MoCu, and Cu/MoCu/Cu High-performance Heat Sink Materials and Manufacturing Technologies

  • Chapter
  • First Online:
Advanced Thermal Management Materials

Abstract

In this chapter, we will first present the properties of WCu, MoCu, and Cu/MoCu/Cu high-performance heat sink materials in great detail. Then we will introduce manufacturing technologies such as high-temperature liquid-phase sintering, reactive sintering, and infiltration. Then we will introduce CMC/CPC composite manufacturing technologies such as hot rolling lamination, explosive forming, and laser cladding. Finally, we will discuss the WCu and MoCu microelectronics packaging material manufacturing technologies research diagram and present detailed descriptions of each step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson JL, German R (1994) The solubility criterion for liquid phase sintering. Adv Powder Metall Particular Mater, 3:267–269

    Google Scholar 

  2. Johnson JL, German RM (1993) Phase equilibria effects on the enhanced liquid phase sintering of tungsten-cooper. Metall Trans A 24A:2369–2377

    Google Scholar 

  3. German RM (1993) A model for the thermal properties of liquid-phase sintered composites. Metall Trans A 24A:1745–1752

    Google Scholar 

  4. Hens KF, Johnson JL, Randall M (1994) German pilot production of advanced electronic packages via powder injection molding. Adv Powder Metall Part Mater 4:217–229

    Google Scholar 

  5. Teledyne Advanced Materials Nashville R&D Facility (1995) SEM evaluation of two selected Hosokawa test runs. Nashville, TN, 7 Feb 1995

    Google Scholar 

  6. German RM, Hens KF, Johnson JL (1994) Powder metallurgy processing of thermal management materials for microelectronic applications. Int J Powder Metall 30(2)

    Google Scholar 

  7. Petzow G, Kaysser WA, Amtenbrink M (1981) Liquid phase and activated sintering: theory and practice. In: Proceedings of the 5th international round table conference on sintering, Portoroz, Yugoslavia, 7–10 Sept 1981

    Google Scholar 

  8. Li CJ, German RM (1984) Enhanced sintering of tungsten-phase equilibria effects on properties. Int J Powder Metall Powder Technol 20(2), American Powder Metallurgy Institute

    Google Scholar 

  9. Li C, German RM (1983) The properties of tungsten processed chemically activated sintering. Metall Trans 14A:2031–2041

    Google Scholar 

  10. German RM, Munir ZA (1976) Enhanced low-temperature sintering of tungsten. Metall Trans 7A:1873–1877

    Google Scholar 

  11. German RM, Ham V (1976) The effect of nickel and palladium additions on the activated sintering of tungsten. Int J Powder Metall Powder Technol 12(2)

    Google Scholar 

  12. German RM, Munir ZA (1976) Systematic trends in the chemically activated sintering of tungsten. High Temp Science 8:267–280

    Google Scholar 

  13. Hayden HW, Brophy JH (1963) The activated sintering of tungsten with group VIII elements. J Electrochem Soc 110(7):805–810

    Article  Google Scholar 

  14. Burton JJ, Machlin ES (1976) Prediction of segregation to alloy surfaces from bulk phase diagrams. Phys Rev Lett 37(21):1433–1436

    Article  Google Scholar 

  15. Kaysser WA, Petzow G (1985) Present state of liquid phase sintering. Powder Metall 28(3):145–150

    Google Scholar 

  16. German RM, Munir ZA (1977) Rhenium activated sintering. J Less-Common Met 53:141

    Article  Google Scholar 

  17. German RM, Munir ZA (1976) Temperature sensitivity in the chemically activated sintering of hafnium. J Less-Common Met 46:333–338

    Article  Google Scholar 

  18. German RM, Munir ZA (1978) Heterodiffusion model for the activated sintering of molybdenum. J Less-Common Met 58:61–74

    Article  Google Scholar 

  19. German RM (1983) A quantitative theory of diffusional activated sintering. Sci Sinter 15(1):27–42

    Google Scholar 

  20. Huppmann WJ, Riegger H (1975) Modelling of rearrangement processes in liquid phase sintering. ACTA Metall 23:965–971

    Article  Google Scholar 

  21. Samsonov GV, Yakovlev VI (1967) Activated sintering of tungsten with palladium additions. Institute of Materials Science. Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 7(55), pp 45–49. Original article 30 Aug 1966

    Google Scholar 

  22. Samsonov GV, Yakovlev VI (1967) Activated sintering of tungsten with nickel additions. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 8(56), pp10–16. Original article submitted 12 Apr 1966

    Google Scholar 

  23. Samsonov GV, Yakovlev VI (1969) Theory and technology of sintering, thermal, and chemicothermal treatment processes--activation of the sintering of tungsten by the iron-group metals. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 10(82), pp 32–38. Original article submitted 21 May 1968

    Google Scholar 

  24. Samsonov GV, Yakovlev VI (1970) Activation of the sintering process of tungsten by the platinum-group metals. Institute of Materials Science, Academy of Sciences of Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 1(85), pp 37–44. Original article submitted 29 Jul 1968

    Google Scholar 

  25. Munir ZA, German RM (1977) A generalized model for the prediction of periodic trends in the activation of sintering of refractory metals. High Temp Sci 9:275–283

    Google Scholar 

  26. Gessinger GH, Fischmeister HF (1972) A modified model for the sintering of tungsten with nickel additions. J Less-Common Met 27(2):129–141

    Article  Google Scholar 

  27. Kaysser WA, Zivkovic M, Petzow G (1985) Shape accommodation during grain growth in the presence of a liquid phase. J Mater Sci 20:578–584

    Article  Google Scholar 

  28. German RM (1987) The two-dimensional connectivity of liquid phase sintered microstructures. Metall Trans A 18A:909–914

    Google Scholar 

  29. Yang S-C, Mani SS, German RM (1990) The effect of contiguity on growth kinetics in liquid-phase sintering. JOM 42(4):16–19

    Article  Google Scholar 

  30. Brophy JH, Hayden HW, Wulff J (1961) The sintering and strength of coated and co-reduced nickel tungsten powder. Trans Metall Soc AIME 221(6):1225–1231

    Google Scholar 

  31. German RM (1996) Microstructure of the gravitationally settle region in a liquid-phase sintered dilute tungsten heavy alloy. Metall Mater Trans A 26A:279–288

    Google Scholar 

  32. Bhalla AK, Williams JD (1976) A comparative assessment of explosive and other methods of compaction in the production of tungsten-copper composites. Powder Metall 1:31–37

    Google Scholar 

  33. Moon IH, Lee JS (1977) Sintering of W-Cu contact materials with Ni and Co dopants. Powder Metall Int 9(1):23–24

    Google Scholar 

  34. Huppmann WJ, Bauer W (1975) Characterization of the degree of mixing in liquid-phase sintering experiments. Powder Metall 18(36):249–258

    Google Scholar 

  35. Parikh NM, Humenik M Jr (1957) Cermets: II, wettability and microstructure studies in liquid-phase sintering. J Am Ceram Soc 40(9):315–320

    Article  Google Scholar 

  36. Kothari NC (1967) Densification and grain growth during liquid-phase sintering of tungsten nickel-copper alloys. J Less-Common Met 13:457–468

    Article  Google Scholar 

  37. Wittenauer J and Nieh TG (1991) Fine-grained W-Cu-Co alloys via liquid phase sintering. Lockheed Missiles & Space Co. In: Crowson A, Chen ES (eds) Tungsten and tungsten alloys-recent advances. The Minerals, Metals & Materials Society, Warrendale, PA

    Google Scholar 

  38. Teodorovich OK, Levchenko GV (1964) Nickel in tungsten-copper contacts. Institute of Materials Problems, Academy of Sciences, Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 6(24), pp 43–47. Original article submitted 28 Jan1964

    Google Scholar 

  39. Naidich YV, Lavrinenko IA, Evdokimov VA (1977) Liquid phase sintering under pressure of tungsten-nickel-copper composites. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 4(172), pp 43–49. Original article submitted 14 Jul 1976

    Google Scholar 

  40. Stevens AJ (1974) Powder-metallurgy solutions to electrical contact problems. Powder Metall 17(34):331–346

    Google Scholar 

  41. Gessinger GH, Melton KN (1977) Burn-off behaviour of W-Cu contact materials in an electric arc. Powder Metall Int 9(2):67–72

    Google Scholar 

  42. Srikanth V, Upadhyaya GS (1983) Effect of tungsten particle size on sintered properties of heavy alloys.. Indian Institute of Technology, Kanpur (India). Received 19 Aug 1983; Revised 26 Oct 1983

    Google Scholar 

  43. Zukas EG, Rogers PSZ, Rogers RS (1976) Spheroid growth by coalescence during liquidphase sintering. Z Metallkde, 67:591–595

    Google Scholar 

  44. Grinberg EM, Tikhonova IV, Ol’shanskii BI, Ol’shanskii AB, Zapol MY (1986) Reaction of carbon with molybdenum during indirect sintering. Tulachermet Scientific-Production Association. Tula Polytechnic Institute. Translated from Poroshkovaya Metallurgiya, 8(284), pp 20–25. Original article submitted 19 Nov 1985

    Google Scholar 

  45. Prokushev NK, Smirnov VP (1986) Kinetics of densification and growth of refractory phase grains in the liquid-phase sintering of very finely divided tungsten-copper materials. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 9(285), pp 30–37. Original article submitted 28 Jan 1986

    Google Scholar 

  46. Buchatskii LM, Stolin AM, and Khudyaev SI (1986) Kinetics of the change of density distribution in hot one-sided pressing of a viscous porous body.. Department of the Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka. Translated from Poroshkovaya Metallurgiya, 9(285), pp 37–42. Original article submitted 28 Jan 1986

    Google Scholar 

  47. Skorokhod VV, Panichkina VV, Prokushev NK (1986) Theory and technology of sintering, thermal, and chemicothermal treatment processes. Structural inhomogeneity and localization of densification in the liquid-phase sintering of tungsten-copper powder mixtures. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 8(284), pp 14–19. Original article submitted 13 Nov 1985

    Google Scholar 

  48. Skorokhod VV, Solonin YM, Filippov NI, Roshchin AN (1983)Theory and technology of sintering, thermal, and chemicothermal treatment processes: sintering of tungsten-copper composites of various origins.. Institute of Materials Science, Academy of Sciences of Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 9(249), pp 9–13. Original article submitted 30 June 1982

    Google Scholar 

  49. Panichkina VV, Sirotyuk MM, Skorokhod VV (1982). Theory and technology of sintering, thermal, and chemicothermal treatment processes: liquid-phase sintering of very fine tungsten-copper powder mixtures. Institute of Materials Science, Academy of Sciences of the Ukrainian SSR. Translated from Poroshkovaya Metallurgiya, 6(234), pp 27–31. Original article submitted 31 Jul 1981

    Google Scholar 

  50. Sebastian KV, Tendolkar GS (1979) High density tungsten-copper liquid phase sintered composites from coreduced oxide powders. Int J Powder Metall Powder Technol 15(1):45–53

    Google Scholar 

  51. Moon IH, Lee JS (1979) Activated sintering of tungsten-copper contact materials. Powder Metall 22(1):5–7

    MathSciNet  Google Scholar 

  52. Kothari NC (1982) Factors affecting tungsten-copper and tungsten-silver electrical contact materials. Powder Metall Int 14(3):139–159

    Google Scholar 

  53. Johnson JL, German RM (1994) Chemically activated liquid phase sintering of tungsten-copper. Int J Powder Metall 30(1):91–102

    Google Scholar 

  54. Huppmann WJ (1975) Sintering in the presence of liquid phase. In: Proceedings of the forth international conference on sintering and related phenomena, University of Notre Dame, Notre Dame, IN, 26–27 May 1975

    Google Scholar 

  55. German RM, Rabin BH (1985) Enhanced sintering through second phase additions. Powder Metall 28:7–12

    Google Scholar 

  56. Kosco, New low-expansion alloys for semiconductor applications. Solid State Technology. Jan 1969, 47-49

    Google Scholar 

  57. Terasawa M, Minami S, Rubin J, Kyocera Corporation (1983) A comparison of thin flim, thick film, and co-fired high density ceramic multilayer with combined technology: T&T HDCM (thin film and thick film high density ceramic module). Int J Hybrid Microelectron 6(1)

    Google Scholar 

  58. Zweben C (2006) Thermal materials solve power electronics challenges. Power Electronics Technol, pp 40–47

    Google Scholar 

  59. Yang X, Yueqing S (2008) Preparation and properties of Mo-Cu and W-Cu alloys. Chin J Rare Met 32(2):240–244

    Google Scholar 

  60. Han L, Daocheng L, Zhengyun W et al (2007) Influence of high power ball mill technology on structure of tungsten-copper composites. Powder Metall Ind 17(2):30–33

    Google Scholar 

  61. Degan X, Hui C, Xicong L (2006) Advances in research on aluminum silicon carbide electronic packaging composites and components. Mater Rev 20(3):111–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jiang, G., Diao, L., Kuang, K. (2013). Properties of WCu, MoCu, and Cu/MoCu/Cu High-performance Heat Sink Materials and Manufacturing Technologies. In: Advanced Thermal Management Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1963-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1963-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1962-4

  • Online ISBN: 978-1-4614-1963-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics