Skip to main content

Preclinical Experience with AMD3100 for Mobilization of Hematopoietic Stem and Progenitor Cells

  • Chapter
  • First Online:
Novel Developments in Stem Cell Mobilization

Abstract

The SDF-1/CXCL12–CXCR4 axis is involved in a number of functional activities of hematopoietic stem (HSC) and progenitor cells (HPC). This includes migration, chemotaxis, homing, and survival. AMD3100, also known as Plerixafor or Mozobil, is a small molecular weight Bicyclam known to specifically antagonize the binding of stromal cell-derived factor-1 (SDF-1)/CXCL12 to one of its receptors, CXCR4. This chapter reviews preclinical studies demonstrating the first proof-of-principle that AMD3100 is a potent and rapid mobilizer of HSC/HPC to the blood in mice and that AMD3100 synergizes with the main HSC/HPC-mobilizing agent, granulocyte-colony-stimulating factor (G-CSF) to greatly enhance G-CSF-induced mobilization of HSC/HPC. Preclinical studies, which led to clinical evaluation of AMD3100 were possible in part because of the nonspecies specificity of AMD3100 which allowed for mobilization studies first in mice, and subsequently in dogs and monkeys, including transplantation of the mobilized cells into conditioned animals of their own species. Preclinical studies in higher animals and the first, and subsequent human clinical studies with AMD3100 are described. Also, discussed are the use of AMD3100 with other mobilizing agents, such as GRO-β, and potential uses of AMD3100 to enhance engraftment of HSC, to treat inflammatory disorders involving SDF-1/CXCL12–CXCR4 interactions, and as a tool to dissect out cell and intracellular events mediated by SDF-1/CXCL12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaheen M, Broxmeyer HE (2009) The humoral regulation of hematopoiesis. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Silberstein LE, McGlave P, Heslop H, Anastasi J (eds) Hematology: basic principles and practice, 5th edn. Elsevier Churchill Livingston, Philadelphia, pp 253–275, Part III, Chapter 24

    Google Scholar 

  2. Broxmeyer HE, Smith FO (2009) Cord blood hematopoietic cell transplantation. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG (eds) Thomas’ hematopoietic cell transplantation, 4th edn. Wiley-Blackwell, West Sussex, pp 559–576, Section 4, Chapter 39

    Chapter  Google Scholar 

  3. Broxmeyer HE (2004) Proliferation, self-renewal, and survival characteristics of cord blood hematopoietic stem and progenitor cells. In: Broxmeyer HE (ed) Cord blood: biology, immunology, banking, and clinical transplantation. Amer. Assoc, Blood Banking, Bethesda, pp 1–21, Chapter 1

    Google Scholar 

  4. Broxmeyer HE, Srour E, Orschell C, Ingram DA, Cooper S, Plett PA, Mead LE, Yoder MC (2009) Cord blood hematopoietic stem and progenitor cells. In: Klimanskaya I, Lanza R (eds) Essentials of stem cell biology. Academic, Elsevier Science, San Diego, pp 151–156, Chapter 7

    Chapter  Google Scholar 

  5. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936. doi:10.1126/science.1064081

    Article  PubMed  CAS  Google Scholar 

  6. Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102:1249–1253. doi:10.1182/blood-2003-01-0318

    Article  PubMed  CAS  Google Scholar 

  7. Ng-Cashin J, Shen T (2004) Mobilization of autologous peripheral blood hematopoietic cells for support of high-dose cancer therapy. In: Blume KG, Forman SJ, Appelbaum FR (eds) Thomas’ hematopoietic cell transplantation, 3rd edn. Blackwell Publishing, Ltd., Malden, pp 576–587

    Google Scholar 

  8. Schmitz N (2004) Peripheral blood hematopoietic cells for allogeneic transplantation. In: Blume KG, Forman SJ, Appelbaum FR (eds) Thomas’ hematopoietic cell transplantation, 3rd edn. Blackwell Publishing, Ltd., Malden, pp 588–598

    Google Scholar 

  9. Pelus LM, Fukuda S (2008) Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 22:466–473. doi:10.1038/sj.leu.2405021

    Article  PubMed  CAS  Google Scholar 

  10. Pelus LM (2008) Peripheral blood stem cell mobilization: new regimens, new cells, where do we stand. Curr Opin Hematol 15:285–292. doi:10.1097/MOH.0b013e328302f43a

    Article  PubMed  Google Scholar 

  11. Papayannopoulou T (2004) Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103:1580–1585. doi:10.1182/blood-2003-05-1595

    Article  PubMed  CAS  Google Scholar 

  12. Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975. doi:10.1016/j.exphem. 2006.04.002

    Article  PubMed  CAS  Google Scholar 

  13. Cancelas JA, Jansen M, Williams DA (2006) The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobilization. Exp Hematol 34:976–985. doi:10.1016/j.exphem.2006.03.016

    Article  PubMed  CAS  Google Scholar 

  14. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J (2006) Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)—implications for trafficking of CXCR4+ stem cells. Exp Hematol 34:986–995. doi:10.1016/j.exphem.2006.03.015

    Article  PubMed  CAS  Google Scholar 

  15. Winkler IG, Levesque JP (2006) Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 34:996–1009. doi:10.1016/j.exphem.2006.04.005

    Article  PubMed  CAS  Google Scholar 

  16. Pelus LM, Fukuda S (2006) Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 34:1010–1020. doi:10.1016/j.exphem.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  17. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806. doi:10.1146/annurev.immunol.21.120601.141007

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Hangoc G, Campbell TB, Goodman M, Tao W, Pollok K, Srour EF, Broxmeyer HE (2008) Identification of parameters required for efficient lentiviral vector transduction and engraftment of human cord blood CD34(+) NOD/SCID-repopulating cells. Exp Hematol 36:947–956. doi:10.1016/j.exphem.2008.06.005

    Article  PubMed  CAS  Google Scholar 

  19. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120. doi:10.1084/jem.185.1.111

    Article  PubMed  CAS  Google Scholar 

  20. Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91:100–110

    PubMed  CAS  Google Scholar 

  21. Jo DY, Rafii S, Hamada T, Moore MA (2000) Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest 105:101–111. doi:10.1172/JCI7954

    Article  PubMed  CAS  Google Scholar 

  22. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195:1145–1154. doi:10.1084/jem.20011284DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  23. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848. doi:10.1126/science.283.5403.845DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  24. Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003. doi:10.1038/sj.leu.2402684

    Article  PubMed  CAS  Google Scholar 

  25. Lee Y, Gotoh A, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, Broxmeyer HE (2002) Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 99:4307–4317. doi:10.1182/blood.V99.12.4307DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  26. Joo EK, Broxmeyer HE, Kwon HJ, Kang HB, Kim JS, Lim JS, Choe YK, Choe IS, Myung PK, Lee Y (2004) Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e. Stem Cells Dev 13:563–570. doi:10.1089/1547328042417318

    Article  PubMed  CAS  Google Scholar 

  27. Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, Hangoc G, Shaheen M, Li X, Clapp DW (2003) Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol 73:630–638. doi:10.1189/jlb.1002495DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  28. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C, Clapp DW, Kim CH (2003) Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 170:421–429

    PubMed  CAS  Google Scholar 

  29. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003. doi:10.1126/science.1097071

    Article  PubMed  CAS  Google Scholar 

  30. Christopherson KW, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169:7000–7008

    PubMed  CAS  Google Scholar 

  31. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2:581–587. doi:10.1038/nrd1134

    Article  PubMed  Google Scholar 

  32. Hatse S, Princen K, Bridger G, De CE, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527:255–262. doi:10.1016/S0014-5793(02)03143-5DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  33. Rosenkilde MM, Gerlach LO, Jakobsen JS, Skerlj RT, Bridger GJ, Schwartz TW (2004) Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 279:3033–3041. doi:10.1074/jbc.M309546200

    Article  PubMed  CAS  Google Scholar 

  34. Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW (2003) Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry 42:710–717. doi:10.1021/bi0264770

    Article  PubMed  CAS  Google Scholar 

  35. Labrosse B, Brelot A, Heveker N, Sol N, Schols D, De CE, Alizon M (1998) Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 72:6381–6388

    PubMed  CAS  Google Scholar 

  36. Blanco J, Barretina J, Henson G, Bridger G, De CE, Clotet B, Este JA (2000) The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother 44:51–56. doi:10.1128/AAC.44.1.51-56.2000DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  37. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318. doi:10.1084/jem.20041385

    Article  PubMed  CAS  Google Scholar 

  38. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G, Dale DC (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730. doi:10.1182/blood-2003-02-0663

    Article  PubMed  CAS  Google Scholar 

  39. Hubel K, Liles WC, Broxmeyer HE, Rodger E, Wood B, Cooper S, Hangoc G, Macfarland R, Bridger GJ, Henson GW, Calandra G, Dale DC (2004) Leukocytosis and Mobilization of CD34+ Hematopoietic Progenitor Cells by AMD3100, a CXCR4 Antagonist. Support Cancer Ther 1:165–172. doi:10.3816/SCT.2004.n.008

    Article  PubMed  Google Scholar 

  40. Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra G, Christensen J, Wood B, Price TH, Dale DC (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 45:295–300. doi:10.1111/j.1537-2995.2005.04222.x

    Article  PubMed  CAS  Google Scholar 

  41. Broxmeyer HE, Hangoc G, Cooper S, Bridger G (2001) Interference of the SDF-1/CXCR4 axis in mice with AMD3100 induces rapid high level mobilization of hematopoietic progenitor cells, and AMD3100 acts synergistically with G-CSF and MIP-1α to mobilize progenitors. Blood 98(Suppl 1):811a (abstract #3371)

    Google Scholar 

  42. Lord BI, Woolford LB, Wood LM, Czaplewski LG, McCourt M, Hunter MG, Edwards RM (1995) Mobilization of early hematopoietic progenitor cells with BB-10010: a genetically engineered variant of human macrophage inflammatory protein-1 alpha. Blood 85:3412–3415

    PubMed  CAS  Google Scholar 

  43. Broxmeyer HE, Orazi A, Hague NL, Sledge GW Jr, Rasmussen H, Gordon MS (1998) Myeloid progenitor cell proliferation and mobilization effects of BB10010, a genetically engineered variant of human macrophage inflammatory protein-1alpha, in a phase I clinical trial in patients with relapsed/refractory breast cancer. Blood Cells Mol Dis 24:14–30. doi:10.1006/bcmd.1998.0167

    Article  PubMed  CAS  Google Scholar 

  44. Broxmeyer HE, Cooper S, Hangoc G, Gao JL, Murphy PM (1999) Dominant myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med 189:1987–1992. doi:10.1084/jem.189.12.1987DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  45. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE (1995) Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85:2269–2275

    PubMed  CAS  Google Scholar 

  46. Fibbe WE, Pruijt JF, Velders GA, Opdenakker G, van KY, Figdor CG, Willemze R (1999) Biology of IL-8-induced stem cell mobilization. Ann N Y Acad Sci 872:71–82. doi:10.1111/j.1749-6632.1999.tb08454.xDOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  47. Laterveer L, Zijlmans JM, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE (1996) Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Exp Hematol 24:1387–1393

    PubMed  CAS  Google Scholar 

  48. Wang J, Mukaida N, Zhang Y, Ito T, Nakao S, Matsushima K (1997) Enhanced mobilization of hematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukoc Biol 62:503–509

    PubMed  CAS  Google Scholar 

  49. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ, Pelus LM (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 97:1534–1542. doi:10.1182/blood.V97.6.1534DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  50. Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103:110–119. doi:10.1182/blood-2003-04-1115

    Article  PubMed  CAS  Google Scholar 

  51. Roberts AW, DeLuca E, Begley CG, Basser R, Grigg AP, Metcalf D (1995) Broad inter-individual variations in circulating progenitor cell numbers induced by granulocyte colony-stimulating factor therapy. Stem Cells 13:512–516. doi:10.1002/stem.5530130508

    Article  PubMed  CAS  Google Scholar 

  52. Roberts AW, Foote S, Alexander WS, Scott C, Robb L, Metcalf D (1997) Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 89:2736–2744

    PubMed  CAS  Google Scholar 

  53. de Haan G, Ausema A, Wilkens M, Molineux G, Dontje B (2000) Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes. Br J Haematol 110:638–646. doi:10.1046/j.1365-2141.2000.02252.xDOI:dx.doi.org

    Article  PubMed  Google Scholar 

  54. Croop JM, Cooper R, Fernandez C, Graves V, Kreissman S, Hanenberg H, Smith FO, Williams DA (2001) Mobilization and collection of peripheral blood CD34+ cells from patients with Fanconi anemia. Blood 98:2917–2921. doi:10.1182/blood.V98.10.2917DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  55. Pulliam AC, Hobson MJ, Ciccone SL, Li Y, Chen S, Srour EF, Yang FC, Broxmeyer HE, Clapp DW (2008) AMD3100 synergizes with G-CSF to mobilize repopulating stem cells in Fanconi anemia knockout mice. Exp Hematol 36:1084–1090. doi:10.1016/j.exphem.2008.03.016

    Article  PubMed  CAS  Google Scholar 

  56. Burroughs L, Mielcarek M, Little MT, Bridger G, Macfarland R, Fricker S, Labrecque J, Sandmaier BM, Storb R (2005) Durable engraftment of AMD3100-mobilized autologous and allogeneic peripheral-blood mononuclear cells in a canine transplantation model. Blood 106:4002–4008. doi:10.1182/blood-2005-05-1937

    Article  PubMed  CAS  Google Scholar 

  57. Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S, Bridger G, Dunbar CE, Hematti P (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107:3772–3778. doi:10.1182/blood-2005-09-3592

    Article  PubMed  CAS  Google Scholar 

  58. Pusic I, DiPersio JF (2010) Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr Opin Hematol 17:319–326. doi:10.1097/MOH.0b013e328338b7d5

    Article  PubMed  CAS  Google Scholar 

  59. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, Calandra G, DiPersio JF (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22:1095–1102. doi:10.1200/JCO.2004.07.131

    Article  PubMed  CAS  Google Scholar 

  60. Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K, Grove B, Dye A, Bridger G (2008) AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 41:331–338. doi:10.1038/sj.bmt.1705908

    Article  PubMed  CAS  Google Scholar 

  61. Giralt S, Stadtmauer EA, Harousseau JL, Palumbo A, Bensinger W, Comenzo RL, Kumar S, Munshi NC, Dispenzieri A, Kyle R, Merlini G, San MJ, Ludwig H, Hajek R, Jagannath S, Blade J, Lonial S, Dimopoulos MA, Einsele H, Barlogie B, Anderson KC, Gertz M, Attal M, Tosi P, Sonneveld P, Boccadoro M, Morgan G, Sezer O, Mateos MV, Cavo M, Joshua D, Turesson I, Chen W, Shimizu K, Powles R, Richardson PG, Niesvizky R, Rajkumar SV, Durie BG (2009) International myeloma working group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high-dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia 23:1904–1912. doi:10.1038/leu.2009.127

    Article  PubMed  CAS  Google Scholar 

  62. Dugan MJ, Maziarz RT, Bensinger WI, Nademanee A, Liesveld J, Badel K, Dehner C, Gibney C, Bridger G, Calandra G (2010) Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin’s lymphoma undergoing stem cell mobilization. Bone Marrow Transplant 45:39–47. doi:10.1038/bmt.2009.119

    Article  PubMed  CAS  Google Scholar 

  63. Toledano H, Yahel A, Cohen IJ, Yaniv I, Stein J (2010) Successful mobilization, harvest and transplant of peripheral blood stem cells using AMD3100 and G-CSF following high dose craniospinal irradiation for medulloblastoma in a young child. Pediatr Blood Cancer 54:613–615. doi:10.1002/pbc.22370

    PubMed  Google Scholar 

  64. Grignani G, Perissinotto E, Cavalloni G, Carnevale SF, Aglietta M (2005) Clinical use of AMD3100 to mobilize CD34+ cells in patients affected by non-Hodgkin’s lymphoma or multiple myeloma. J Clin Oncol 23:3871–3872. doi:10.1200/JCO.2005.55.250

    Article  PubMed  Google Scholar 

  65. Devine S, Gazitt Y, Calandra G (2005) Reply to Editor. J Clin Oncol 23:3872–3873

    Article  Google Scholar 

  66. Tavor S, Eisenbach M, Jacob-Hirsch J, Golan T, Petit I, Benzion K, Kay S, Baron S, Amariglio N, Deutsch V, Naparstek E, Rechavi G (2008) The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 22:2151–5158. doi:10.1038/leu.2008.238

    Article  PubMed  CAS  Google Scholar 

  67. Fruehauf S, Ehninger G, Hubel K, Topaly J, Goldschmidt H, Ho AD, Muller S, Moos M, Badel K, Calandra G (2010) Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin’s lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant 45:269–275. doi:10.1038/bmt.2009.142

    Article  PubMed  CAS  Google Scholar 

  68. Lack NA, Green B, Dale DC, Calandra GB, Lee H, MacFarland RT, Badel K, Liles WC, Bridger G (2005) A pharmacokinetic-pharmacodynamic model for the mobilization of CD34+ hematopoietic progenitor cells by AMD3100. Clin Pharmacol Ther 77:427–436. doi:10.1016/j.clpt.2004.12.268

    Article  PubMed  CAS  Google Scholar 

  69. Flomenberg N, Devine SM, DiPersio JF, Liesveld JL, McCarty JM, Rowley SD, Vesole DH, Badel K, Calandra G (2005) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106:1867–1874. doi:10.1182/blood-2005-02-0468

    Article  PubMed  CAS  Google Scholar 

  70. Fruehauf S, Seeger T, Maier P, Li L, Weinhardt S, Laufs S, Wagner W, Eckstein V, Bridger G, Calandra G, Wenz F, Zeller WJ, Goldschmidt H, Ho AD (2006) The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp Hematol 34:1052–1059. doi:10.1016/j.exphem.2006.06.003

    Article  PubMed  CAS  Google Scholar 

  71. Capoccia BJ, Shepherd RM, Link DC (2006) G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 108:2438–2445. doi:10.1182/blood-2006-04-013755

    Article  PubMed  CAS  Google Scholar 

  72. Broxmeyer HE, Hangoc G, Cooper S, Campbell T, Ito S, Mantel C (2007) AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci 1106:1–19. doi:10.1196/annals.1392.013

    Article  PubMed  CAS  Google Scholar 

  73. Pelus LM, Fukuda S, Bridger G (2006) The CXCR4 antagonist AMD3100 and the CXCR2 agonist GROβ synergistically mobilize hematopoietic stem cells (HSC) with short and long term repopulating activity. Blood 108(suppl Part 1):105a (abstract #339)

    Google Scholar 

  74. Hoggatt J, Pelus LM (2010) Hematopoietic stem cell mobilization with agents other than G-CSF. In: Methods in molecular biology. Stem cell mobilization: methods and protocols. Humana Press (in press)

    Google Scholar 

  75. Pelus LM, Clapp DW, Bridger G (2006) Suprasynergistic peripheral blood stem cell mobilization in normal and Fanconi anemia knockout mice by the combination of G-CSF plus the CXCR4 antagonist AMD3100 and the CXCR2 agonist GROβ. Blood 108(suppl Part 1):909a (abstract #3185)

    Google Scholar 

  76. Pelus LM, Singh P (2008) The combination of AMD3100 plus GROβ rapidly mobilizes hematopoietic stem cells with enhanced homing, adhesion and survival properties. Blood (Abstract) 112:34, abstract 71

    Article  Google Scholar 

  77. Chen J, Larochelle A, Fricker S, Bridger G, Dunbar CE, Abkowitz JL (2006) Mobilization as a preparative regimen for hematopoietic stem cell transplantation. Blood 107:3764–3771. doi:10.1182/blood-2005-09-3593

    Article  PubMed  CAS  Google Scholar 

  78. Broxmeyer HE, Christopherson KW II (2004) Stromal cell derived factor-1/CXCL12, CXCR4 and CD26 in the mobilization and homing of hematopoietic stem and progenitor cells. Curr Med Chem Anti-Inflamm Anti Allergy Agents 3:303–311, In special issue: Guest Editor: Kim CH (guest ed) Lymphocyte migration and chemokines

    Article  CAS  Google Scholar 

  79. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE (2007) Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 16:347–354. doi:10.1089/scd.2007.9995

    Article  PubMed  CAS  Google Scholar 

  80. Kang Y, Chen BJ, Deoliveira D, Mito J, Chao NJ (2010) Selective enhancement of donor hematopoietic cell engraftment by the CXCR4 antagonist AMD3100 in a mouse transplantation model. PLoS One 5:e11316

    Article  PubMed  Google Scholar 

  81. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE (2005) SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 23:1324–1332. doi:10.1634/stemcells.2005-0085

    Article  PubMed  CAS  Google Scholar 

  82. Lee HM, Wysoczynski M, Liu R, Shin DM, Kucia M, Botto M, Ratajczak J, Ratajczak MZ (2010) Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 24:573–582. doi:10.1038/leu.2009.271

    Article  PubMed  CAS  Google Scholar 

  83. Cheng M, Zhou J, Wu M, Boriboun C, Thorne T, Liu T, Xiang Z, Zeng Q, Tanaka T, Tang YL, Kishore R, Tomasson MH, Miller RJ, Losordo DW, Qin G (2010) CXCR4-mediated bone marrow progenitor cell maintenance and mobilization are modulated by c-kit activity. Circ Res 107:1083–1093. doi:10.1161/CIRCRESAHA.110.220970

    Article  PubMed  CAS  Google Scholar 

  84. Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, Kao W-M, Battista M, Tesio M, Kollet O, Netzer Cohen N, Margalit R, Buss EC, Baleux F, Oshi S, Fujii N, Larochelle A, Dunbar CE, Broxmeyer HE, Frenette PS, Lapidot T (2010) Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamine is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25(8):1286–1296

    Article  Google Scholar 

  85. Lukacs NW, Berlin A, Schols D, Skerlj RT, Bridger GJ (2002) AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. Am J Pathol 160:1353–1360

    Article  PubMed  CAS  Google Scholar 

  86. Matthys P, Hatse S, Vermeire K, Wuyts A, Bridger G, Henson GW, De CE, Billiau A, Schols D (2001) AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol 167:4686–4692

    PubMed  CAS  Google Scholar 

  87. Le BB, Van CN, Daoudi JM, Di GC, Domb AJ, Vierling P (2004) AMD3100 conjugates as components of targeted nonviral gene delivery systems: synthesis and in vitro transfection efficiency of CXCR4-expressing cells. Bioconjug Chem 15:413–423. doi:10.1021/bc034220o

    Article  Google Scholar 

  88. Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638. doi:10.1074/jbc.M300609200

    Article  PubMed  CAS  Google Scholar 

  89. Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ Jr, Broxmeyer HE, Kopelovich L, Nakshatri H (2007) Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26:3329–3337. doi:10.1038/sj.onc.1210120

    Article  PubMed  CAS  Google Scholar 

  90. Andreeff M, Konoplev S, Wang RY, Zeng Z, McQueen T, Shi YX, Medeiros LJ, Estey E, McCarty JM, Elkins S, Champlin R, Calandra G, Bridger G, Konopleva M (2006) Massive mobilization of AML cells into circulation by disruption of leukemia/stroma cell interactions using CXCR4 antagonist AMD3100: First evidence in patients and potential for abolishing bone marrow microenvironment-mediated resistance. Blood 108(suppl Part 1):171a (abstract #568)

    Google Scholar 

  91. Mendez-Ferrer S, Chow A, Merad M, Frenette PS (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16:235–242. doi:10.1097/MOH. 0b013e32832bd0f5

    Article  PubMed  CAS  Google Scholar 

  92. Notta F, Doulatov S, Laurent E, Peoppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells Capable of long-term multilineage engraftment. Science 333:218–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies cited in references from the author’s laboratory were supported in part by US Public Health Service RO1 Grants HL56416 and HL67384 from the US National Institutes of Health and Project 1 in PO1 HL053586 from National Heart Lung Blood Institute to HEB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal E. Broxmeyer PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Broxmeyer, H.E. (2012). Preclinical Experience with AMD3100 for Mobilization of Hematopoietic Stem and Progenitor Cells. In: Fruehauf, S., Zeller, W., Calandra, G. (eds) Novel Developments in Stem Cell Mobilization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1960-0_1

Download citation

Publish with us

Policies and ethics