Skip to main content

Computation with Polynomial Equations and Inequalities Arising in Combinatorial Optimization

  • Conference paper
  • First Online:
Book cover Mixed Integer Nonlinear Programming

Abstract

This is a survey of a recent methodology to solve systems of polynomial equations and inequalities for problems arising in combinatorial optimization. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions.

AMS(MOS) subject classifications. 90C27, 90C22, 68W05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balas, S. Ceria, and G. Cornu´ejols, A lift-and-project cutting plane algorithm for mixed 0–1 programs, Mathematical Programming, 58 (1993), pp. 295–324.

    Google Scholar 

  2. J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, Springer, 1998.

    Google Scholar 

  3. M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in STOC ’96: Proceedings of the twentyeighth annual ACM symposium on Theory of computing, New York, NY, USA, 1996, ACM, pp. 174–183.

    Google Scholar 

  4. N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient algorithms for solving overdefined systems of multivariate polynomial equations, in EUROCRYPT, 2000, pp. 392–407.

    Google Scholar 

  5. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer Verlag, 1992.

    Google Scholar 

  6. , Using Algebraic Geometry, Vol. 185 of Graduate Texts in Mathematics, Springer, 2nd ed., 2005.

    Google Scholar 

  7. J. De Loera, C. Hillar, P. Malkin, and M. Omar, Recognizing graph theoretic properties with polynomial ideals. http://arxiv.org/abs/1002.4435, 2010.

  8. J. De Loera, J. Lee, P. Malkin, and S. Margulies, Hilbert’s Nullstellensatz and an algorithm for proving combinatorial infeasibility, in Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation (ISSAC 2008), 2008.

    Google Scholar 

  9. J. De Loera, J. Lee, S. Margulies, and S. Onn, Expressing combinatorial optimization problems by systems of polynomial equations and the nullstellensatz, to appear in the Journal of Combinatorics, Probability and Computing (2008).

    Google Scholar 

  10. A. Dickenstein and I. Emiris, eds., Solving Polynomial Equations: Foundations, Algorithms, and Applications, Vol. 14 of Algorithms and Computation in Mathematics, Springer Verlag, Heidelberg, 2005.

    Google Scholar 

  11. W. Eberly and M. Giesbrecht, Efficient decomposition of associative algebras over finite fields, Journal of Symbolic Computation, 29 (2000), pp. 441–458.

    Article  MATH  MathSciNet  Google Scholar 

  12. A.V. Gelder, Another look at graph coloring via propositional satisfiability, Discrete Appl. Math., 156 (2008), pp. 230–243.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Gilbert, Random graphs, Annals of Mathematical Statistics, 30 (1959), pp. 1141–1144.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Gouveia, M. Laurent, P.A. Parrilo, and R.R. Thomas, A new semidefinite programming relaxation for cycles in binary matroids and cuts in graphs. http://arxiv.org/abs/0907.4518, 2009.

  15. J. Gouveia, P.A. Parrilo, and R.R. Thomas, Theta bodies for polynomial ideals, SIAM Journal on Optimization, 20 (2010), pp. 2097–2118.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Grigoriev and N. Vorobjov, Complexity of Nullstellensatz and Positivstellensatz proofs, Annals of Pure and Applied Logic, 113 (2002), pp. 153–160.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Henrion and J.-B. Lasserre, GloptiPoly: Global optimization over polynomials with MATLAB and SeDuMi, ACM Trans. Math. Softw., 29 (2003), pp. 165–194.

    Article  MATH  MathSciNet  Google Scholar 

  18. , Detecting global optimality and extracting solutions in GloptiPoly, in Positive polynomials in control, Vol. 312 of Lecture Notes in Control and Inform. Sci., Springer, Berlin, 2005, pp. 293–310.

    Google Scholar 

  19. T. Hogg and C. Williams, The hardest constraint problems: a double phase transition, Artif. Intell., 69 (1994), pp. 359–377.

    Article  MATH  Google Scholar 

  20. A. Kehrein and M. Kreuzer, Characterizations of border bases, Journal of Pure and Applied Algebra, 196 (2005), pp. 251 – 270.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Kehrein, M. Kreuzer, and L. Robbiano, An algebraist’s view on border bases, in Solving Polynomial Equations: Foundations, Algorithms, and Applications, A. Dickenstein and I. Emiris, eds., Vol. 14 of Algorithms and Computation in Mathematics, Springer Verlag, Heidelberg, 2005, ch. 4, pp. 160–202.

    Google Scholar 

  22. J. Koll´ar, Sharp effective Nullstellensatz, Journal of the AMS, 1 (1988), pp. 963–975.

    Google Scholar 

  23. J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. on Optimization, 11 (2001), pp. 796–817.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Lasserre, M. Laurent, and P. Rostalski, Semidefinite characterization and computation of zero-dimensional real radical ideals, Found. Comput. Math., 8 (2008), pp. 607–647.

    Article  MATH  MathSciNet  Google Scholar 

  25. , A unified approach to computing real and complex zeros of zerodimensional ideals, in Emerging Applications of Algebraic Geometry, M. Putinar and S. Sullivant, eds., vol. 149 of IMA Volumes in Mathematics and its Applications, Springer, 2009, pp. 125–155.

    Google Scholar 

  26. J.B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear 0–1 programs, SIAM J. on Optimization, 12 (2002), pp. 756–769.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Laurent, A comparison of the Sherali-Adams, Lov´asz-Schrijver, and Lasserre relaxations for 0–1 programming, Math. Oper. Res., 28 (2003), pp. 470–496.

    Article  MATH  MathSciNet  Google Scholar 

  28. , Semidefinite relaxations for max-cut, in The Sharpest Cut: The Impact of Manfred Padberg and His Work, M. Gr¨otschel, ed., Vol. 4 of MPS-SIAM Series in Optimization, SIAM, 2004, pp. 257–290.

    Google Scholar 

  29. , Semidefinite representations for finite varieties, Mathematical Programming, 109 (2007), pp. 1–26.

    Google Scholar 

  30. , Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algebraic Geometry, M. Putinar and S. Sullivant, eds., Vol. 149 of IMA Volumes in Mathematics and its Applications, Springer, 2009, pp. 157–270.

    Google Scholar 

  31. J. L¨ofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

    Google Scholar 

  32. L. Lov´asz, Stable sets and polynomials, Discrete Math., 124 (1994), pp. 137–153.

    Google Scholar 

  33. , Semidefinite programs and combinatorial optimization, in Recent advances in algorithms and combinatorics, B. Reed and C. Sales, eds., Vol. 11 of CMS Books in Mathematics, Spring, New York, 2003, pp. 137–194.

    Google Scholar 

  34. L. Lov´asz and A. Schrijver, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim., 1 (1991), pp. 166–190.

    Google Scholar 

  35. S. Margulies, Computer Algebra, Combinatorics, and Complexity: Hilbert’s Nullstellensatz and NP-Complete Problems, PhD thesis, UC Davis, 2008.

    Google Scholar 

  36. M. Marshall, Positive polynomials and sums of squares., Mathematical Surveys and Monographs, 146. Providence, RI: American Mathematical Society (AMS). xii, p. 187, 2008.

    Google Scholar 

  37. B. Mourrain, A new criterion for normal form algorithms, in Proc. AAECC, Vol. 1719 of LNCS, Springer, 1999, pp. 430–443.

    Google Scholar 

  38. B. Mourrain and P. Tr´ebuchet, Stable normal forms for polynomial system solving, Theoretical Computer Science, 409 (2008), pp. 229 – 240. Symbolic- Numerical Computations.

    Google Scholar 

  39. Y. Nesterov, Squared functional systems and optimization problems, in High Performance Optimization, J.F. et al., eds., ed., Kluwer Academic, 2000, pp. 405–440.

    Google Scholar 

  40. P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, PhD thesis, California Institute of Technology, May 2000.

    Google Scholar 

  41. , Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming, 96 (2003), pp. 293–320.

    Google Scholar 

  42. P.A. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), S. Basu and L. Gonzalez-Vega, eds., American Mathematical Society, Providence RI, 2003, pp. 83–100.

    Google Scholar 

  43. S. Prajna, A. Papachristodoulou, P. Seiler, and P.A. Parrilo, SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

    Google Scholar 

  44. G. Reid and L. Zhi, Solving polynomial systems via symbolic-numeric reduction to geometric involutive form, Journal of Symbolic Computation, 44 (2009), pp. 280–291.

    Article  MATH  MathSciNet  Google Scholar 

  45. S. Roman, Advanced Linear Algebra, Vol. 135 of Graduate Texts in Mathematics, Springer New York, third ed., 2008.

    Google Scholar 

  46. A. Schrijver, Theory of linear and integer programming, Wiley, 1986.

    Google Scholar 

  47. H. Sherali and W. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero–one programming problems, SIAM Journal on Discrete Mathematics, 3 (1990), pp. 411–430.

    Article  MATH  MathSciNet  Google Scholar 

  48. N.Z. Shor, Class of global minimum bounds of polynomial functions, Cybernetics, 23 (1987), pp. 731–734.

    Article  MATH  Google Scholar 

  49. G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Mathematische Annalen, 207 (1973), pp. 87–97.

    Article  MATH  MathSciNet  Google Scholar 

  50. H. Stetter, Numerical Polynomial Algebra, SIAM, 2004.

    Google Scholar 

  51. L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), pp. 49–95.

    Article  MATH  MathSciNet  Google Scholar 

  52. L. Zhang, zchaff v2007.3.12. Available at http://www.princeton.edu/_chaff/zchaff.html, 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus A. De Loera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

De Loera, J.A., Malkin, P.N., Parrilo, P.A. (2012). Computation with Polynomial Equations and Inequalities Arising in Combinatorial Optimization. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_16

Download citation

Publish with us

Policies and ethics