Skip to main content

Metabolomics in Animal Breeding

  • Chapter
  • First Online:

Abstract

Metabolomics in its close definition is a rather young field in farm animal production. Initially, metabolomic analyses in farm animals had been initiated for many non-genetic applications e.g., control of drug abuse, control of embryo and oocyte quality in reproductive processes or for detection of product origin of food, whereas genetic variability essentially has been ignored in these fields. Only recently, the fields “Physiological Genomics/Genetics” and “Refined phenotypic description of animal models” have emerged, that fit into the current concept entitled “Genetics meets Metabolomics: from Experiment to Systems Biology”. Up to now, the non-genetic application fields however, still comprise the majority of attempts applying metabolomic technologies in animal breeding including:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kieken F, Pinel G, Antignac JP et al (2011) Generation and processing of urinary and plasmatic metabolomic fingerprints to reveal an illegal administration of recombinant equine growth hormone from LC-HRMS measurements. Metabolomics 7:84–93

    Article  CAS  Google Scholar 

  2. Dumas ME, Debrauwer L, Beyet L, Lesage D, André F, Paris A, Tabet JC (2002) Analyzing the physiological signature of anabolic steroids in cattle urine using pyrolysis/metastable atom bombardment mass spectrometry and pattern recognition. Anal Chem 74:5393–5404

    Article  PubMed  CAS  Google Scholar 

  3. Samuelsson LM, Forlin L, Karlsson G, Adolfsson-Erici M, Larsson DGJ (2006) Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquat Toxicol 78:341–349

    Article  PubMed  CAS  Google Scholar 

  4. Rijk JCW, Lommen A, Essers ML et al (2009) Metabolomics approach to anabolic steroid urine profiling of bovines treated with prohormones. Anal Chem 81:6879–6888

    Article  PubMed  CAS  Google Scholar 

  5. Jung Y, Lee J, Kwon J, Lee KS, Ryu DH, Hwang GS (2010) Discrimination of the geographical origin of beef by H-1 NMR-based metabolomics. J Agric Food Chem 58:10458–10466

    Article  PubMed  CAS  Google Scholar 

  6. Boudonck KJ, Mitchell MW, Wulff J, Ryals JA (2009) Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics 5:375–386

    Article  CAS  Google Scholar 

  7. Surowiec I, Fraser PD, Patel R, Halket J, Bramley PM (2011) Metabolomic approach for the detection of mechanically recovered meat in food products. Food Chem 125:1468–1475

    Article  CAS  Google Scholar 

  8. Brundige DR, Maga EA, Klasing KC, Murray JD (2010) Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs. Transgenic Res 19:563–574

    Article  PubMed  CAS  Google Scholar 

  9. Graham SF, Kennedy T, Chevallier O et al (2010) The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 6:395–404

    Article  CAS  Google Scholar 

  10. Moorby JM, Fraser MD, Parveen I, Lee MRF, Wold JP (2010) Comparison of 2 high-throughput spectral techniques to predict differences in diet composition of grazing sheep and cattle. J Anim Sci 88:1905–1913

    Article  PubMed  CAS  Google Scholar 

  11. Bender K, Walsh S, Evans ACO, Fair T, Brennan L (2010) Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139:1047–1055

    Article  PubMed  CAS  Google Scholar 

  12. Singh R, Sinclair KD (2007) Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology 68:S56–S62

    Article  PubMed  CAS  Google Scholar 

  13. Ametaj BN, Zebeli Q, Saleem F et al (2010) Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 6:583–594

    Article  CAS  Google Scholar 

  14. Nissen PM, Nebel C, Oksbjerg N, Hanne C (2011) Metabolomics reveals relationship between plasma inositols and birth weight: possible markers for fetal programming of Type 2 diabetes. J Biomed Biotechnol. doi:10.1155/2011/378268

  15. Nyberg NT, Nielsen MO, Jaroszewski JW (2010) Metabolic trajectories based on H-1 NMR spectra of urines from sheep exposed to nutritional challenges during prenatal and early postnatal life. Metabolomics 6:489–496

    Article  CAS  Google Scholar 

  16. Lacitignola L, Fanizzi FP, Francioso E, Crovace A (2008) 1 H NMR investigation of normal and osteo-arthritic synovial fluid in the horse. Vet Comp Orthopaed 21:85–88

    CAS  Google Scholar 

  17. Lasch P, Schmitt J, Beekes M et al (2003) Antemortem identification of bovine spongiform encephalopathy from serum using infrared spectroscopy. Anal Chem 75:6673–6678

    Article  PubMed  CAS  Google Scholar 

  18. Rendel JM, Robertson A (1950) Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. J Genet 50:1–8

    Article  Google Scholar 

  19. Beckmann JS, Soller M (1983) Restriction fragment length polymorphisms in genetic-improvement – methodologies, mapping and costs. Theor Appl Genet 67:35–43

    Article  Google Scholar 

  20. Matukumalli LK, Lawley CT, Schnabel RD et al (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4:4

    Article  Google Scholar 

  21. Dominik S, Henshall JM, Kube PD et al (2010) Evaluation of an Atlantic salmon SNP chip as a genomic tool for the application in a Tasmanian Atlantic salmon (Salmo salar) breeding population. Aquaculture 308:S56–S61

    Article  CAS  Google Scholar 

  22. Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theor Appl Genet 46:319–330

    Article  Google Scholar 

  23. Flach D, Dzapo V, Wassmuth R (1984) Stoffwechselparameter als Indikatoren für die Leistungsveranlagung von Rindern. I. Beziehungen von Schilddrüsenhormonen, Insulin, Kreatin-Kinase, Glutamat-Dehydrogenase und Glutathion-Reduktase zu Kriterien der Milchleistung. Z Tierzüchtg Züchtungsbiol 101:188–197

    Article  CAS  Google Scholar 

  24. Fuhrmann H, Eulitzmeder C, Geldermann H, Sallmann HP (1989) On the evaluation of ­hormone and metabolic profiles after infusion of glucose, propionate and butyrate in cattle. Berl Munch Tierarztl 102:188–193

    CAS  Google Scholar 

  25. Klein MS, Almstetter MF, Schlamberger G et al (2010) Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J Dairy Sci 93:1539–1550

    Article  PubMed  CAS  Google Scholar 

  26. Dettmer K, Almstetter MF, Appel IJ et al (2010) Comparison of serum versus plasma collection in gas chromatography – mass spectrometry-based metabolomics. Electrophoresis 31:2365–2373

    Article  PubMed  CAS  Google Scholar 

  27. Arthur JA, Albers AA (2003) Industrial perspective on problems and issues associated with poultry breeding. In: Muir WM, Aggrey SE (eds) Poultry genetics, breeding and biotechnology. CABI, Oxford

    Google Scholar 

  28. Walzem RL, Baillie RA, Wiest N et al (2007) Functional annotation of genomic data with metabolic inference. Poult Sci 86:1510–1522

    PubMed  CAS  Google Scholar 

  29. Eberlein A, Takasuga A, Setoguchi K et al (2009) Dissection of genetic factors modulating fetal growth in cattle indicates a substantial role of the non-SMC condensin I complex, subunit G (NCAPG) gene. Genetics 183:951–964

    Article  PubMed  CAS  Google Scholar 

  30. Setoguchi K, Watanabe T, Weikard R et al (2011) The SNP c1326T>G in the non-SMC condensin I complex subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Anim Genet. doi:10.1111/j1365-2052.2011.02196.x

  31. Weikard R, Altmaier E, Suhre K et al (2010) Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition. Physiol Genomics 42A:79–88

    Article  PubMed  CAS  Google Scholar 

  32. Setoguchi K, Furuta M, Hirano T et al (2009) Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet 10:43

    Article  PubMed  Google Scholar 

  33. Beckmann M, Enot DP, Overy DP et al (2010) Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Brit J Nutr 103:1127–1138

    PubMed  CAS  Google Scholar 

  34. Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282

    Article  PubMed  Google Scholar 

  35. Pears MR, Salek RM, Palmer DN et al (2007) Metabolomic investigation of CLN6 neuronal ceroid lipofuscinosis in affected South Hampshire sheep. J Neurosci Res 85:3494–3504

    Article  PubMed  CAS  Google Scholar 

  36. Solberg R, Loberg EM, Andresen JH et al (2010) Resuscitation of newborn piglets. Short-term influence of FiO(2) on matrix metalloproteinases, caspase-3 and BDNF. PLoS One 5(12):e14261

    Article  PubMed  Google Scholar 

  37. Whitfield PD, Noble PJM, Major H et al (2005) Metabolomics as a diagnostic tool for hepatology: validation in a naturally occurring canine model. Metabolomics 1:215–225

    Article  CAS  Google Scholar 

  38. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  39. Vanraden PM, Van Tassell CP, Wiggans GR et al (2010) Invited review: reliability of genomic predictions for North American holstein bulls. J Dairy Sci 92:16–24

    Article  Google Scholar 

  40. de Los Campos G, Gianola D, Allison DB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 11:880–886

    Article  Google Scholar 

  41. Engler M, Defoor P, Marquess L (2010) Impact of a leptin SNP and zilpaterol hydrochloride on growth and carcass characteristics of finishing steers. In: 32nd conference of the international society for animal genetics, Edinburgh

    Google Scholar 

  42. Viant MR, Ludwig C, Rhodes S, Günther UL, Allaway D (2007) Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics 3:453–463

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kühn, C. (2012). Metabolomics in Animal Breeding. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_8

Download citation

Publish with us

Policies and ethics