Skip to main content

Mouse Genetics and Metabolic Mouse Phenotyping

  • Chapter
  • First Online:
Book cover Genetics Meets Metabolomics

Abstract

The mouse is widely considered as a toolbox for modeling human diseases: mice are easy to handle and breed, there exist inbred strains, and the mouse genome sequence is available. Mutant mouse lines can be generated by different technologies, and standardized phenotyping of these mutant mouse lines produces a huge amount of valuable data. Useful resources for the scientific community are archives of mutant lines and strains as well as databases delivering information about the mouse lines and their availability. The phenotypic characterization of mutant mouse lines is the bottleneck within the pipeline from the generation via phenotyping to archiving of mutant mouse lines. Mouse clinics generate large data sets by the standardized, comprehensive phenotypic characterization of mutant mouse lines. There is a portfolio of phenotyping protocols available for a broad spectrum of disease areas that is considered as an international standard. For the investigation of human diseases like diabetes, obesity or the metabolic syndrome, metabolic tests to analyze mutant mouse lines become increasingly important. In this respect, challenge experiments have become the major focus to induce disease phenotypes in mutant mice that would remain undiscovered without the environmental challenges. These experimental setups reflect human conditions, where genetic predisposition and the environmental factors originating from different life style act together and enhance each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silver LM (1995) Mouse genetics. Oxford University Press, New York

    Google Scholar 

  2. Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915):563–573, 5

    Article  PubMed  Google Scholar 

  3. Dermitzakis ET, Reymond A, Lyle R et al (2002) Numerous potentially functional but ­non-genic conserved sequences on human chromosome 21. Nature 420:578–582

    Article  PubMed  CAS  Google Scholar 

  4. Wade CM, Kulbokas EJ 3rd, Kirby AW et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420(6915):574–578

    Article  PubMed  CAS  Google Scholar 

  5. Reymond A, Marigo V, Yaylaoglu MB et al (2002) Human chromosome 21 gene expression atlas in the mouse. Nature 420:582–586

    Article  PubMed  CAS  Google Scholar 

  6. Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562, 5

    Article  PubMed  CAS  Google Scholar 

  7. Ehling UH (1966) Dominant mutations affecting the skeleton in offspring of x-irradiated male mice. Genetics 54:1381–1389

    PubMed  CAS  Google Scholar 

  8. Favor J, Sund M, Neuhäuser-Klaus A, Ehling UH (1990) A dose-response analysis of ethylnitrosourea-induced recessive specific-locus mutations in treated spermatogonia of the mouse. Mutat Res 231:47–54

    Article  PubMed  CAS  Google Scholar 

  9. Wilson L, Ching YH, Farias M et al (2005) Random mutagenesis of proximal mouse chromosome 5 uncovers predominantly embryonic lethal mutations. Genome Res 15:1095–1105

    Article  PubMed  CAS  Google Scholar 

  10. Kile BT, Hentges KE, Clark AT et al (2003) Functional genetic analysis of mouse chromosome 11. Nature 425:81–86

    Article  PubMed  CAS  Google Scholar 

  11. Srivastava AK, Mohan S, Wergedal JE, Baylink DJ (2003) A genomewide screening of N-ethyl-N-nitrosourea-mutagenized mice for musculoskeletal phenotypes. Bone 33:179–191

    Article  PubMed  CAS  Google Scholar 

  12. Takahasi KR, Sakuraba Y, Gondo Y (2007) Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol Biol 8:52

    Article  PubMed  Google Scholar 

  13. Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM–the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6:180–185

    Article  PubMed  CAS  Google Scholar 

  14. Guan C, Ye C, Yang X, Gao J (2010) A review of current large-scale mouse knockout efforts. Genesis 48:73–85

    PubMed  CAS  Google Scholar 

  15. Ringwald M, Iyer V, Mason JC et al (2011) The IKMC web portal: a central point of entry to data and resources from the international knockout mouse consortium. Nucleic Acids Res 39:D849–D855, Database issue

    Article  PubMed  Google Scholar 

  16. Abbott A (2009) The check-up. Nature 460:947–948

    Article  PubMed  CAS  Google Scholar 

  17. Gailus-Durner V, Fuchs H, Becker L et al (2005) Introducing the German mouse clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404

    Article  PubMed  CAS  Google Scholar 

  18. Fuchs H, Gailus-Durner V, Adler T et al (2009) The German mouse clinic: a platform for systemic phenotype analysis of mouse models. Curr Pharm Biotechnol 10:236–243

    Article  PubMed  CAS  Google Scholar 

  19. Brown SD, Chambon P, de Angelis MH, Consortium E (2005) EMPReSS: standardized phenotype screens for func-tional annotation of the mouse genome. Nat Genet 37:1155

    Article  PubMed  CAS  Google Scholar 

  20. Abbott A (2010) Mouse project to find each gene’s role. Nature 465:410

    Article  PubMed  CAS  Google Scholar 

  21. Hagn M, Marschall S, Hrabě de Angelis M (2007) EMMA – the European mouse mutant archive. Brief Funct Genomic Proteomic 6:186–192

    Article  PubMed  Google Scholar 

  22. Wilkinson P, Sengerova J, Matteoni R et al (2010) EMMA – mouse mutant resources for the international scientific community. Nucleic Acids Res 38:D570–D576, Database issue

    Article  PubMed  CAS  Google Scholar 

  23. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963

    Article  PubMed  CAS  Google Scholar 

  24. Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11:478–483

    Article  PubMed  CAS  Google Scholar 

  25. Hecht NB (1986) Regulation of gene expression during mammalian spermatogenesis. In: Rossant J, Pedersen RA (eds) Experimental approaches to mammalian embryonic development. Cambridge University Press, New York

    Google Scholar 

  26. Augustin M, Sedlmeier R, Peters T et al (2005) Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm Genome 16:405–413

    Article  PubMed  CAS  Google Scholar 

  27. Rubio-Aliaga I, Soewarto D, Wagner S et al (2007) A genetic screen for modifiers of the delta1-dependent notch signaling function in the mouse. Genetics 175:1451–1463

    Article  PubMed  CAS  Google Scholar 

  28. Gailus-Durner V, Fuchs H, Adler T et al (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509

    Article  PubMed  CAS  Google Scholar 

  29. Fuchs H, Gailus-Durner V, Adler T et al (2011) Mouse phenotyping. Methods 53:120–135

    Article  PubMed  CAS  Google Scholar 

  30. Rogers DC, Fisher EM, Brown SD et al (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713

    Article  PubMed  CAS  Google Scholar 

  31. Schneider I, Tirsch WS, Faus-Kessler T et al (2006) Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German mouse clinic. J Neurosci Methods 157:82–90

    Article  PubMed  Google Scholar 

  32. Neschen S, Morino K, Hammond LE et al (2005) Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA: glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2:55–65

    Article  PubMed  CAS  Google Scholar 

  33. Haller F, Prehn C, Adamski J (2010) Quantification of steroids in human and mouse plasma using online solid phase extraction coupled to liquid chromatography tandem mass spectrometry. Nat Protoc. doi:10.1038/nprot.2010.22

  34. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    Article  PubMed  CAS  Google Scholar 

  35. Beckers J, Wurst W, Hrabě de Angelis M (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10:371–380

    Article  PubMed  CAS  Google Scholar 

  36. Maier H, Lengger C, Simic B et al (2008) MausDB: an open source application for phenotype data and mouse colony management in large-scale mouse phenotyping projects. BMC Bioinformatics 26:169

    Article  Google Scholar 

  37. Morgan H, Beck T, Blake A et al (2010) EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Res 38:D577–D585, Database issue

    Article  PubMed  CAS  Google Scholar 

  38. Horsch M, Schädler S, Gailus-Durner V et al (2008) Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics 8:1248–1256

    Article  PubMed  CAS  Google Scholar 

  39. Enard W, Gehre S, Hammerschmidt K et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971

    Article  PubMed  CAS  Google Scholar 

  40. Shimokawa N, Haglund K, Hölter SM et al (2010) CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. EMBO J 29:2421–2432

    Article  PubMed  CAS  Google Scholar 

  41. Saarinkangas J, Mattila PK, Varjosalo M et al (2011) Missing-in metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia J. Cell Science 124:1245–1255

    Article  PubMed  CAS  Google Scholar 

  42. Rosemann M, Ivashkevich A, Favor J et al (2010) Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 (416insG) mice. Mamm Genome 21:13–27

    Article  PubMed  CAS  Google Scholar 

  43. Kemter E, Rathkolb B, Rozman J et al (2009) Novel missense mutation of uromodulin in mice causes renal dysfunction with alterations in urea handling, energy, and bone metabolism. Am J Physiol Renal Physiol 297:F1391–F1398

    Article  PubMed  CAS  Google Scholar 

  44. Kemter E, Rathkolb B, Bankir L et al (2010) Mutation of the Na  +  -K  +  -2Cl- cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. Am J Physiol Renal Physiol 298:F1405–F1415

    Article  PubMed  CAS  Google Scholar 

  45. Tocchetti A, Soppo CB, Zani F et al (2010) Loss of the actin remodeler Eps8 causes intestinal defects and improved meta-bolic status in mice. PLoS One 5:e9468

    Article  PubMed  Google Scholar 

  46. Kleinschnitz C, Grund H, Wingler K et al (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 8:e1000479

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Reinhard Seeliger, Nicole Boche, Sabrina Bothur, Anna Dewert, Jan Einicke, Ralf Fischer, Birgit Frankenberger, Sandra Geißler, Michaela Grandl, Brigitte Herrmann, Christine Hollauer, Elfi Holupirek, Maria Kugler, Jacqueline Müller, Elenore Samson, Florian Schleicher, Daniela Schmidt, Waldemar Schneider, Ann-Elisabeth Schwarz, Bettina Sperling, Waldtraud Stettinger, Lucie Thurmann, Susanne Wittich, Anja Wohlbier, and Claudia Zeller as well as the GMC animal caretaker team Manuela Huber, Boris Schön, Heidi Marr, Annica Miedl, Tina Reichelt, Michael Gerstlauer, Renate Huber, and Horst Wenig for expert technical help. This work has been funded by the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.) and to the GMC (NGFNplus grant No. 01GS0850, 01GS0851, 01GS0852, 01GS0853, 01GS0854, GS0868, 01GS0869) as well as by an EU grant (EUMODIC, LSHG-2006-037188, German Mouse Clinic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hrabě de Angelis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuchs, H. et al. (2012). Mouse Genetics and Metabolic Mouse Phenotyping. In: Suhre, K. (eds) Genetics Meets Metabolomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1689-0_7

Download citation

Publish with us

Policies and ethics