Skip to main content

The Hemoglobin Regulatory Regions

  • Chapter
  • First Online:
Book cover Gene Regulatory Sequences and Human Disease
  • 1015 Accesses

Abstract

All animals that use hemoglobin for oxygen transport synthesize different hemoglobin types during the various stages of development. In humans, two gene clusters direct the production of hemoglobin including the α-locus which contains the embryonic ζ gene and two adult α genes on chromosome 16. A second cluster, the β-globin locus located on chromosome 11, contains the ε, Gγ, Aγ, δ, and β genes. The globin genes are arranged from 5′ to 3′ according to the order of their expression and are developmentally regulated to produce different hemoglobin species during ontogeny. Two switches in the type of hemoglobin synthesized during development occur, a process known as hemoglobin switching. Through research efforts over the last two decades, several insights have been gained into the molecular mechanisms of hemoglobin switching. However, the entire process has not been fully elucidated. Studies of naturally occurring globin gene promoter mutations and transgenic mouse investigations have contributed to our understanding of the effect of DNA mutations on globin gene expression. Furthermore, the developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Here, we will review the progress made toward understanding molecular mechanisms that control globin gene expression and the consequences of mutations on hemoglobin switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDP:

CCAAT displacement protein

CBP:

CREB-binding protein

DRED:

Direct repeat erythroid-definitive

Hb F:

Fetal hemoglobin

HPFH:

Hereditary persistence of fetal hemoglobin

HS:

Hypersensitive site

LCR:

Locus control region

SSE:

Stage selector element

SSP:

Stage selector protein

STAT3:

Signal transducers and activators of transcription

Hb SS:

Sickle cell anemia

SCD:

Sickle cell disease

SNP:

Single nucleotide polymorphism

References

  • Antonarakis SE, Orkin SH, Cheng TC, Scott AF, Sexton JP, Trusko SP, Charache S, Kazazian HH Jr (1984) Beta-Thalassemia in American Blacks: novel mutations in the “TATA” box and an acceptor splice site. Proc Natl Acad Sci USA 81:1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Antoniou M, deBoer E, Habets G, Grosveld F (1988) The human beta-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. EMBO J 7:377–384

    Google Scholar 

  • Antoniou M, Grosveld F (1990) Beta-globin dominant control region interacts differently with distal and proximal promoter elements. Genes Dev 4:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Antoniou M, de Boer E, Spanopoulou E, Imam A, Grosveld F (1995) TBP binding and the rate of transcription initiation from the human beta-globin gene. Nucleic Acids Res 23:3473–3480

    Article  PubMed  CAS  Google Scholar 

  • Asano H, Li XS, Stamatoyannopoulos G (1999) FKLF, a novel Kruppel-like factor that activates human embryonic and fetal β-like globin genes. Mol Cell Biol 19:3571–3579

    PubMed  CAS  Google Scholar 

  • Asano H, Li XS, Stamatoyannopoulos G (2000) FKLF-2: a novel Kruppel like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95:3578–3584

    PubMed  CAS  Google Scholar 

  • Atweh GF, Sutton M, Nassif I, Boosalis V, Dover GJ, Wallenstein S, Wright E, Mc-Mahon L, Stamatoyannopoulos G, Faller DV, Perrine SP (1999) Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 93:1790–1797

    PubMed  CAS  Google Scholar 

  • Aufiero B, Neufeld EJ, Orkin SH (1994) Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc Natl Acad Sci USA 91:7757–7761

    Article  PubMed  CAS  Google Scholar 

  • Barberis A, Superti-Furga G, Busslinger M (1987) Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell 50:347–359

    Article  PubMed  CAS  Google Scholar 

  • Bacolla A, Ulrich MJ, Larson JE, Ley TJ, Wells RD (1995) An intramolecular triplex in the human gamma-globin 5′-flanking region is altered by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem 270:24556–24563

    Article  PubMed  CAS  Google Scholar 

  • Behringer RR, Hammer RE, Brinster RL, Palmiter RD, Townes TM (1987) Two 3′ sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. Proc Natl Acad Sci USA 8:7056–7060

    Article  Google Scholar 

  • Bond DR (2005) Three decades of innovation in the management of sickle cell disease: the road to understanding the sickle cell disease clinical phenotype. Blood Rev 19:99–110

    Article  Google Scholar 

  • Bookchin RM, Nagel RL, Balaza T (1975) Role of hybrid tetramer formation in gelation of haemoglobin S. Nature 256:667–668

    Article  PubMed  CAS  Google Scholar 

  • Bookchin RM, Balazs T, Nagel RL, Tellez I (1977) Polymerisation of haemoglobin SA hybrid tetramers. Nature 269:526–527

    Article  PubMed  CAS  Google Scholar 

  • Borg J, Papadopoulos P, Georfitsi M, Gutierrez L, Grech G, Franis P, Phylactides M, Verkerk AJ, van der Spek PJ, Scerri CA, Cassar W, Galdies R, van Licken W, Ozqur Z, Gillemans N, Hou J, Bugeja M, Grosveld FG, von Lindern M, Felice AE, Patronis GP, Philipsen S (2010) Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet 42:801–805

    Article  PubMed  CAS  Google Scholar 

  • Browne P, Shalev O, Hebbel RP (1998) The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Free Radic Biol Med 24:1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Bulger M, van Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA 96:5129–5134

    Article  PubMed  CAS  Google Scholar 

  • Cai SP, Eng B, Francombe WH, Olivieri NF, Kendall AG, Waye JS, Chui DH (1992) Two novel beta-thalassemia mutations in the 5′ and 3′ noncoding regions of the beta-globin gene. Blood 79:1342–1346

    PubMed  CAS  Google Scholar 

  • Carlson J, Nash GB, Gabutti V, al-Yaman F, Wahlgren M (1994) Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation. Blood 84:3909

    PubMed  CAS  Google Scholar 

  • Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, DR B (1995) Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Eng J Med 332:1317–1322

    Article  CAS  Google Scholar 

  • Chen Z, Luo HY, Steinberg MH, Chui DH (2009) BCL11A represses HBG transcription in K562 cells. Blood Cells Mol Dis 42:144–149

    Article  PubMed  CAS  Google Scholar 

  • Cheng TC, Orkin SH, Antonarakis SE, Potter MJ, Sexton JP, Markham AF, Giardina PJ, Li A, Kazazian HH Jr (1984) Beta-thalassemia in Chinese: use of in vivo RNA analysis and oligonucleotide hybridization in systematic characterization of molecular defects. Proc Natl Acad Sci USA 81:2821–2825

    Article  PubMed  CAS  Google Scholar 

  • Clegg JB, Weatherall DJ, Milner PF (1971) Haemoglobin constant spring – a chain termination mutant? Nature 234:337–340

    Article  PubMed  CAS  Google Scholar 

  • Clegg JB, Weatherall DJ, Contopoou-Griva I, Caroutsos K, Poungouras P, Tsevrenis H (1974) Haemoglobin Icaria, a new chain-termination mutant with causes alpha thalassaemia. Nature 251:245–247

    Article  PubMed  CAS  Google Scholar 

  • Crossley M, Whitelaw E, Perkins A, Williams G, Fujiwara Y, Orkin SH (1996) Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. Mol Cell Biol 16:1695–1705

    PubMed  CAS  Google Scholar 

  • Cunningham MJ (2010) Update on thalassemia: clinical care and complications. Hematol Oncol Clin N Am 24:215–227

    Article  Google Scholar 

  • deBoer E, Antoniou M, Mignotte V, Wall L, Grosveld F (1988) The human beta-globin promoter: nuclear protein factors and erythroid specific induction of transcription. EMBO J 7:4203–4212

    PubMed  CAS  Google Scholar 

  • Embury SH, Dozy AM, Miller J, Davis JR Jr, Kleman KM, Preisler H, Vichinsky E, Lande WN, Lubin BH, Kan YW, Mentzer WC (1982) Concurrent sickle-cell anemia and alpha-thalassemia: effect on severity of anemia. N Engl J Med 306:270–274

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N, Philipsen S, Grosveld F (1996) A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region. EMBO J 15:562–568

    PubMed  CAS  Google Scholar 

  • Enver T, Zhang J-W, Papayannopoulou T, Stammatoyannopoulos G (1988) DNA methylation: a secondary event in globin gene switching? Genes Dev 2:698–706

    Article  PubMed  CAS  Google Scholar 

  • Enver T, Raich N, Ebens AJ, Papayannopoulou T, Costantini F, Stamatoyannopoulos G (1990) Developmental regulation of human fetal to-adult globin gene switching in transgenic mice. Nature 344:309–313

    Article  PubMed  CAS  Google Scholar 

  • Ferry A, Baliga S, Monterio C, Chen Y, Pace BS (1997) γ-Globin gene silencing in primary erythroid cultures: an inhibitory role for interleukin-6. J Biol Chem 272:20030–20037

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Harding RM, Boyce AJ, Clegg JB (1998) The population genetics of the haemoglobinopathies. Bailieres Clin Haematol 11:1–51

    Article  CAS  Google Scholar 

  • Foley H, Ofori-Acquah S, Baliga BS, Pace BS (2002) STAT3 mediates globin repression by interleukin-6 in K562 cells. J Biol Chem 77:16211–16219

    Article  CAS  Google Scholar 

  • Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M (1987) Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin expressing hybrids. Nucleic Acids Res 15:10159–10177

    Article  PubMed  CAS  Google Scholar 

  • Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4:1637–1649

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Grosveld F (1998) Locus control regions, chromatin activation and transcription. Curr Opin Cell Biol 10:361–365

    Article  PubMed  CAS  Google Scholar 

  • Fucharoen S, Shimizu K, Fukumaki Y (1990) A novel C-T transition within the distal CCAAT motif of the G gamma-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. Nucleic Acids Res 18:5245–5253

    Article  PubMed  CAS  Google Scholar 

  • Gardiner MR, Daggett DF, Zon LI, Perkins AC (2005) Zebrafish KLF4 is essential for anterior mesendoderm/pre-polster differentiation and hatching. Dev Dyn 234:992–996

    Article  PubMed  CAS  Google Scholar 

  • Gardiner MR, Gongora MM, Grimmone SM, Perkins AC (2007) A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev 124:762–774

    Article  PubMed  CAS  Google Scholar 

  • Gong QH, Stern J, Dean A (1991) Transcriptional role of a conserved GATA-1 site in the human epsilon-globin gene promoter. Mol Cell Biol 11:2558–2566

    PubMed  CAS  Google Scholar 

  • Gonzalez-Redondo JM, Stoming TA, Kutlar A, Kutlar F, Lanclos KD, Howard EF, Fei YJ, Aksoy M, Altay C, Gurgey A et al (1989) A C–T substitution at nt–101 in a conserved DNA sequence of the promotor region of the beta-globin gene is associated with “silent” beta-thalassemia. Blood 73:1705–1711

    PubMed  CAS  Google Scholar 

  • Gonzalez-Redondo JM, Stoming TA, Lanclos KD, Gu YC, Kutlar A, Kutlar F, Nakatsuji T, Deng B, Han IS, McKie VC et al (1988) Clinical and genetic heterogeneity in black patients with homozygous beta-thalassemia from the southeastern United States. Blood 72:1007–1014

    PubMed  CAS  Google Scholar 

  • Goodwin AJ, McInerney JM, Glander MA, Pomerantz O, Lowrey CH (2001) In vivo formation of a human beta-globin locus control region core element requires binding sites for multiple factors including GATA-1, NF-E2, erythroid Kruppel-like factor, and Sp1. J Biol Chem 276:26883–26892

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985

    Article  PubMed  CAS  Google Scholar 

  • Gumucio DL, Rood KL, Gray TA, Riordan MF, Sartor CI, Collins FS (1988) Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin. Mol Cell Biol 8:5310–5322

    PubMed  CAS  Google Scholar 

  • Hankins JS, Ware RE, Rogers ZR et al (2005) Long-term hydroxyurea therapy for infants with sickle cell anemia – the HUSOFT extension study. Blood 106:2269–2275

    Article  PubMed  CAS  Google Scholar 

  • Hardison RC, Chui DH, Giardine B, Riemer C, Patrinos GP, Anagnou N, Miller W, Wajcman H (2002) HbVar: a relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum Mutat 19:225–233

    Article  PubMed  CAS  Google Scholar 

  • Harju-Baker S, Costa FC, Fedosyuk H, Neades R, Peterson KR (2008) Silencing of Aγ-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the −566 GATA site. Mol Cell Biol 28:3101–3113

    Article  PubMed  CAS  Google Scholar 

  • Higgs DR, Wood WG, Jarman AP, Sharpe J, Lida J, Pretorius IM, Ayyub H (1990) A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev 4:1588–1601

    Article  PubMed  CAS  Google Scholar 

  • Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989) A review of the molecular genetics of the human alpha-globin gene cluster. Blood 73:1081–1104

    PubMed  CAS  Google Scholar 

  • Higgs DR, Goodbourn SE, Lamb J, Clegg JB, Weatherall DJ, Proudfoot NJ (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 306:398–400

    Article  PubMed  CAS  Google Scholar 

  • Higgs DR, Gibbons RJ (2010) The molecular basis of α-thalassemia: a model for understanding human molecular genetics. Hematol Oncol Clin N Am 24:1033–1054

    Article  Google Scholar 

  • Huisman TH (1997) Combinations of beta chain abnormal hemoglobins with each other or with beta-thalassemia determinants with known mutations: influence on phenotype. Clin Chem 43:1850–1856

    PubMed  CAS  Google Scholar 

  • Ingram VM (1957) Gene mutations in human haemoglobins: the chemical difference between normal and sickle cell haemoglobin. Nature 180:326

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, McDowell JC, Dean A (2003) Beta-globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res 31:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Jane SM, Gumucio DL, Ney PA, Cunningham JM, Nienhuis AW (1993) Methylation-enhanced binding of Sp1 to the stage selector element of the human gamma-globin gene promoter may regulate development specificity of expression. Mol Cell Biol 13:3272–3281

    PubMed  CAS  Google Scholar 

  • Jane SM, Nienhuis AW, Cunningham JM (1995) Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein. EMBO J 14:97–105

    PubMed  CAS  Google Scholar 

  • Kalra IS, Alam MM, Choudhary PK, Pace BS (2011) Krüppel-like factor 4 activates HBG gene expression in primary erythroid cells. Br J Hematol 154:248–259

    Article  CAS  Google Scholar 

  • Kazazian HH Jr, Orkin SH, Antonarakis SE, Sexton JP, Boehm CD, Goff SC, Waber PG (1984) Molecular characterization of seven beta-thalassemia mutations in Asian Indians. EMBO J 3:593–596

    PubMed  CAS  Google Scholar 

  • Kollias G, Wrighton N, Hurst J, Grosveld F (1986) Regulated expression of human Aγ-, β-, and hybrid β γ-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46:89–94

    Article  PubMed  CAS  Google Scholar 

  • Kollias G, Hurst J, deBoer E, Grosveld F (1987) The human beta-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res 15:5739–5747

    Article  PubMed  CAS  Google Scholar 

  • Lauer J, Shen CK, Maniatis T (1980) The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions. Cell 20:119–130

    Article  PubMed  CAS  Google Scholar 

  • Levings PP, Bungert J (2002) The human beta-globin locus control region. Eur J Biochem 269:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Lewis BA, Orkin SH (1995) A functional initiator element in the human beta-globin promoter. J Biol Chem 270:28139–28144

    Article  PubMed  CAS  Google Scholar 

  • Li S, Moy L, Pittman N, Shue G, Aufiero B, Neufeld EJ, LeLeiko NS, Walsh MJ (1999) Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem 274:7803–7815

    Article  PubMed  CAS  Google Scholar 

  • Li S, Aufiero B, Schiltz RL, Walsh MJ (2000) Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP. Proc Natl Acad Sci USA 97:7166–7171

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Bungert J, Engel JD (1997) Mutation of gene-proximal regulatory elements disrupts human epsilon-, gamma-, and beta-globin expression in yeast artificial chromosome transgenic mice. Proc Natl Acad Sci USA 94:169–174

    Article  PubMed  CAS  Google Scholar 

  • Liu LR, Du ZW, Zhao HL, Liu XL, Huang XD, Shen J, Ju LM, Fang FD, Zhang JW (2005) T to C substitution at −175 or −173 of the gamma-globin promoter affects GATA-1 and OCT-1 binding in vitro differently but can independently reproduce the hereditary persistence of fetal hemoglobin phenotype in transgenic mice. J Biol Chem 280:7452–7459

    Article  PubMed  CAS  Google Scholar 

  • Magram J, Niederreither K, Costantini F (1989) Beta-globin enhancers target expression of a heterologous gene to erythroid tissues of transgenic mice. Mol Cell Biol 9:4581–4584

    PubMed  CAS  Google Scholar 

  • Maier-Redelsperger M, de Noguchi CT, Montalembert M, Rodgers GP, Schechter AN, Gourbil A, Blanchard D, Jais JP, Ducrocq R, Peltier JY (1994) Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian prospective study on sickle cell disease. Blood 84:3182–3188

    PubMed  CAS  Google Scholar 

  • Mantovani R, Malgaretti N, Nicolis S, Ronchi A, Giglioni B, Ottolenghi S (1988) The effects of HPFH mutations in the human gamma-globin promoter on binding of ubiquitous and erythroid specific nuclear factors. Nucleic Acids Res 16:7783–7797

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27

    Article  PubMed  CAS  Google Scholar 

  • Marini MG, Procu L, Asunis I, Loi MG, Ristaldi MS, Procu S, Ikuta T, Cao A, Moi P (2010) Regulation of the human HBA genes by KLF4 in erythroid cell lines. Br J Haematol 149:748–758

    Article  PubMed  CAS  Google Scholar 

  • Martin DI, Orkin SH (1990) Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 4:1886–1898

    Article  PubMed  CAS  Google Scholar 

  • Mavilio F, Giampaolo A, Care A, Migliaccio G, Calandrini M, Russo G, Pagliardi GL, Mastroberardino G, Marinucci M, Peschle C (1983) Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts. Proc Natl Acad Sci USA 80:6907–6911

    Article  PubMed  CAS  Google Scholar 

  • Miller IJ, Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 13:2776–2786

    PubMed  CAS  Google Scholar 

  • Modiano D, Bancone G, Ciminelli BM, Pompei F, Blot I, Simpore J, Modiano G (2007) Haemoglobin S and haemoglobin C: ‘quick but costly’ versus ‘slow but gratis’ genetic adaptations to plasmodium falciparum malaria. Hum Mol Genet 17:789–799

    Article  PubMed  CAS  Google Scholar 

  • Myers RM, Cowie A, Stuve L, Hartzog G, Gaensler K (1989) Genetic and biochemical analysis of the mouse beta-major globin promoter. Prog Clin Biol Res 316A:117–127

    PubMed  CAS  Google Scholar 

  • Nagel RL, Bookchin RM, Johnson J, Labie D, Wajcman H, Isaac-Sodeye WA, Honig GR, Schiliro G, Crookston JH, Matsutomo K (1979) Structural bases of the inhibitory effects of Hb F and A2 on the polymerization of Hb S. Proc Natl Acad Sci USA 76:670–672

    Article  PubMed  CAS  Google Scholar 

  • Nagel RL, Fabry ME, Pagnier J, Zohoun I, Wajcman H, Baudin V, Labie D (1985) Hematologically and genetically distinct forms of sickle cell anemia in Africa. N Engl J Med 312:880

    Article  PubMed  CAS  Google Scholar 

  • Nagel RL, Fabry ME (1985) The many pathophysiologies of sickle cell anemia. Am J Hematol 20:195

    Article  PubMed  CAS  Google Scholar 

  • Nerlov C (2004) C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 4:394–400

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EJ, Skalnik DG, Lievens PM, Orkin SH (1992) Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat Genet 1:50–55

    Article  PubMed  CAS  Google Scholar 

  • Ney PA, Sorrentino BP, Lowrey CH, Nienhuis AW (1990) Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res 18:6011–6017

    Article  PubMed  CAS  Google Scholar 

  • Nishio H, Walsh MJ (2004) CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci USA 101:11257–11262

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH, Antonarkis SE, Kaxazian JJJR (1984) Base substitution at position −88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. J Biol Chem 259:8679–8681

    PubMed  CAS  Google Scholar 

  • Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH Jr (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J 4:453–456

    PubMed  CAS  Google Scholar 

  • Orkin SH, Kazazian HH Jr, Antonarakis SE, Ostrer H, Goff SC, Sexton JP (1982) Abnormal RNA processing due to the exon mutation of beta E-globin gene. Nature 300:768–769

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH, Sexton JP, Cheng TC, Goff SC, Giardina PJ, Lee JI, Kazazian HH Jr.(1983) ATA box transcription mutation in beta-thalassemia. Nucleic Acids Res. 11:4727–34

    PubMed  CAS  Google Scholar 

  • Osada S, Yamamoto H, Nishihara T, Imagawa M (1996) DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem 271:3891–3896

    Article  PubMed  CAS  Google Scholar 

  • Pagnier J, Mears JG, Dunda-Belkhodia O, Schaefer-Rego KE, Beldjord C, Nagel RL, Labie D (1984) Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci USA 81:1771–1773

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Itano HA, Singer SJ and Wells IC (1949) Sickle cell anemia a molecular disease. Science 110:543–8

    Article  PubMed  CAS  Google Scholar 

  • Perrine SP, Ginder GD, Faller DV, Dover GH, Ikuta T, Witkowska HE, Cai SP, Vichinsky EP, Olivieri NF (1993) A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med 328:81–86

    Article  PubMed  CAS  Google Scholar 

  • Perrine SP, Wargin WA, Boosalis MS, Wallis WJ, Case S, Keefer JR, Faller DV, Welch WC, Berenson RJ (2011) Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double-blind, placebo-controlled, single-dose, and repeat-dose studies in healthy volunteers. J Clin Pharmacol 51:1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Merezhinskaya N, Diffley JF, Noguchi CT (1993) Protein-DNA interactions in the epsilon-globin gene silencer. J Biol Chem 268:3430–3437

    PubMed  CAS  Google Scholar 

  • Pirastu M, Saglio G, Chang JC, Cao A, Kan YW (1984) Initiation codon mutation as a cause of alpha thalassemia. J Biol Chem 259:12315–12317

    PubMed  CAS  Google Scholar 

  • Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325:11–16

    Article  PubMed  CAS  Google Scholar 

  • Raich N, Papayannopoulou T, Stamatoyonnopoulos G, Enver T (1992) Demonstration of a human epsilon-globin gene silencer with studies in transgenic mice. Blood 79:861–864

    PubMed  CAS  Google Scholar 

  • Raich N, Clegg CH, Grofti J, Romeo PH, Stamatoyannopoulos G (1995) GATA1 and YY1 are developmental repressors of the human epsilon-globin gene. EMBO J 14:801–809

    PubMed  CAS  Google Scholar 

  • Ristaldi MS, Drabek D, Gribnau J, Poddie D, Yannoutsous N, Cao A, Grosveld F, Imam AM (2001) The role of the −50 region of the human gamma-globin gene in switching. EMBO J 20:5242–5249

    Article  PubMed  CAS  Google Scholar 

  • Ronchi A, Nicolis S, Santoro C, Ottolenghi S (1989) Increased Sp1 binding mediates erythroid-specific overexpression of a mutated (HPFH) gamma-globulin promoter. Nucleic Acids Res 17:10231–10241

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, Heck AJ, Vyas P, de Boer E, Grosveld F, Strouboulis J (2005) GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J 24:2354–2366

    Article  PubMed  CAS  Google Scholar 

  • Sampietro M, Thein SL, Contreras M, Pazmany L (1992) Variation of Hb F and F-cell number with the G-gamma Xmn I (C-T) polymorphism in normal individuals. Blood 79:832–833

    PubMed  CAS  Google Scholar 

  • Schroeder WA, Huisman TH, Shelton JB, Kleihauer EF, Dozy AM, Roberson B (1968a) Evidence for multiple structural genes for the gamma chain of human fetal hemoglobin. Proc Natl Acad Sci USA 60:537–544

    Article  PubMed  CAS  Google Scholar 

  • Sankaran VG, Menne TF, Xu J, Akie TE, Letter G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB, Orkin SH (2008) Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322:1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudin M, Bender MA, Tucker PW, Orkin SH (2009) Developmental and species-divergent globin switching are driven by BCL11A. Nature 460:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, Gavazova S, Chen YH, Hoffman R, DeSimone J (2003) Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood 102:3865–3870

    Article  PubMed  CAS  Google Scholar 

  • Skalnik DG, Strauss EC, Orkin SH (1991) CCAAT displacement protein as a repressor of the myelomonocytic-specific gp91-phox gene promoter. J Biol Chem 266:16736–16744

    PubMed  CAS  Google Scholar 

  • Smith-Whitley K, Pace BS (2007) Sickle cell disease: a phenotypic patchwork. In: Pace BS (ed) Renaissance of sickle cell disease research in the genome era. Imperial College Press, London, pp 45–63

    Google Scholar 

  • Spritz RA, Jagadeeswaran P, Choudary PV, Biro PA, Elder JT, deRiel JK, Manley JL, Gdfter ML, Forget BG, Weissman SM (1981) Base substitution in an intervening sequence of a beta  +  −thalassemic human globin gene. Proc Natl Acad Sci USA 78:2455–2459

    Article  PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos G, Josephson B, Zhang JW, Li Q (1993) Developmental regulation of human gamma-globin genes in transgenic mice. Mol Cell Biol 13:7636–7644

    PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos G, Grosveld F (2001) Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H (eds) The molecular basis of blood disease, vol 3. Saunders, Philadelphia

    Google Scholar 

  • Steinberg MH, Rosenstock W, Coleman MB, Adams JG, Platica O, Cedeno M, Rieder RF, Wilson JT, Milner P, West S (1984) Effects of thalassemia and microcytosis on the hematologic and vasoocclusive severity of sickle cell anemia. Blood 63:1353–1360

    PubMed  CAS  Google Scholar 

  • Steinberg MH, Embury SH (1986) Alpha-thalassemia in blacks: genetic and clinical aspects and interactions with the sickle hemoglobin gene. Blood 68:985–990

    PubMed  CAS  Google Scholar 

  • Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ (1997) Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter study of hydroxyurea. Blood 89:1078–1088

    PubMed  CAS  Google Scholar 

  • Stoming TA, Stoming GS, Lanclos KD, Fei YJ, Altay C, Kutlar F, Huisman TH (1989) An A gamma type of nondeletional hereditary persistence of fetal hemoglobin with a T  →  C mutation at position −175 to the cap site of the A gamma globin gene. Blood 73:329–333

    PubMed  CAS  Google Scholar 

  • Strouboulis J, Dillon N, Grosveld F (1992) Developmental regulation of a complete 70-kb human β-globin locus in transgenic mice. Genes Dev 6:1857–1864

    Article  PubMed  CAS  Google Scholar 

  • Stuve LL, Myers RM (1990) A directly repeated sequence in the beta-globin promoter regulates transcription in murine erythroleukemia cells. Mol Cell Biol 10:972–981

    PubMed  CAS  Google Scholar 

  • Superti-Furga G, Barberis A, Schaffner G, Busslinger M (1988) The −117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the gamma-globin gene. EMBO J 7:3099–3107

    PubMed  CAS  Google Scholar 

  • Tanabe O, Katsuoka F, Campbell AD, Song W, Yamamoto M, Tanimoto K, Engel JD (2002) An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J 21:3434–3442

    Article  PubMed  CAS  Google Scholar 

  • Thein SL (1993) Beta-thalassaemia. Baillieres Clin Haematol 6:151–175

    Article  PubMed  CAS  Google Scholar 

  • Townes TM, Behringer RR (1990) Human globin locus activation region (LAR): role in temporal control. Trends Genet 6:219–223

    Article  PubMed  CAS  Google Scholar 

  • Trudel M, Constantini F (1987) A 3′ enhancer contributes to the stage-specific expression of the human beta-globin gene. Genes Dev 1:954–961

    Article  PubMed  CAS  Google Scholar 

  • Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH (1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119

    Article  PubMed  CAS  Google Scholar 

  • Tuan DY, Solomon WB, Cavallesco R, Huang G, London IM (1989) Characterization of a human globin enhancer element. Prog Clin Biol Res 316A:63–72

    PubMed  CAS  Google Scholar 

  • Ulrich MJ, Gray WJ, Ley TJ (1992) An intramolecular DNA triplex is disrupted by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem 267:18649–18658

    PubMed  CAS  Google Scholar 

  • Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17:453–462

    Article  PubMed  CAS  Google Scholar 

  • Walters MC, Sullivan KM (2010) Stem-cell transplantation for sickle cell disease. N Engl J Med 362:955–956

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Bunch C, Kelly S, Gunn Y, Breckon G (1985) Control of haemoglobin switching by a developmental clock? Nature 313:320–323

    Article  PubMed  CAS  Google Scholar 

  • Wood WG (1993) Increased HbF in adult life. Baillieres Clin Haematol 6:177–213

    Article  PubMed  CAS  Google Scholar 

  • Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, Raba S, Thornburg CD, Roger ZR, Kalpatthi RV, Barredo JC, Brown RC, Sarnaik SA, Howard TH, Wynn LW, Kutlar A, Armstron FD, Files BA, Goldsmith JC, Waclawiw MA, Huang X, Thompson BW, BABY HUG investigators (2011) Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377:1663–1672

    Article  PubMed  CAS  Google Scholar 

  • Weatherall DJ, Clegg JB (1975) The alpha-chain-termination mutants and their relation to the alpha-thalassaemias. Philos Trans R Soc Lond B Biol Sci 271:411–455

    Article  PubMed  CAS  Google Scholar 

  • Wong C, Dowling CE, Saiki RK, Higuchi RG, Erlich HA, Kazazizn JJJR (1987) Characterization of beta-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330:384–386

    Article  PubMed  CAS  Google Scholar 

  • Yannaki E, Stamatoyannopoulos G (2010) Hematopoietic stem cell mobilization strategies for gene therapy of beta thalassemia and sickle cell disease. Ann N Y Acad Sci 1202:59–63

    Article  PubMed  CAS  Google Scholar 

  • Yu CY, Motamed K, Chen J, Bailey AD, Shen CK (1991) The CACC box upstream of human embryonic epsilon globin gene binds Sp1 and is a functional promoter element in vitro and in vivo. J Biol Chem 266:8907–8915

    PubMed  CAS  Google Scholar 

  • Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA (2005) A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis 35:227–235

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Cumming H, Cerruti L, Cunningham JM, Jane SM (2004) Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J Biol Chem 279:41477–41486

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM (2010) KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genetic 42:742–744

    Article  CAS  Google Scholar 

  • Zimmerman SA, Schultz WH, Davis JS, Pickens CV, Mortier NA, Howard TA (2004) Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 103:2039–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty S. Pace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pace, B.S., Makala, L.H. (2012). The Hemoglobin Regulatory Regions. In: Ahituv, N. (eds) Gene Regulatory Sequences and Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1683-8_2

Download citation

Publish with us

Policies and ethics