Skip to main content

Cis-Regulatory Variation and Cancer

  • Chapter
  • First Online:
Book cover Gene Regulatory Sequences and Human Disease

Abstract

In the traditional model of human disease genetics, mutations in coding regions of the genome were assumed to underlie disease phenotypes. It is only in the recent past that functional noncoding regions – such as promoters, enhancers and silencers – have been implicated in disease states. At its most basic level, cancer is a disease caused by the misexpression of genes normally responsible for regulating cell proliferation. It is therefore logical that mutations and variants within cis-regulatory elements controlling the expression of proto-oncogenes and tumor suppressor genes would underlie some tumorigenic gene expression changes. As changes in noncoding functional elements are harder to identify than alterations in protein ­coding sequences, many of the recent insights into cis-regulatory variants involved in cancer etiology have been uncovered by genome-wide association studies (GWAS), highlighting risk variants in non-genic regions. Here, we highlight examples of cancer-associated variation in promoters, enhancers, and silencers, as well as changes to the overall architecture of a gene’s regulatory landscape. These functional characterizations bring us closer to understanding the role of cis-regulatory mutations and cancer risk/progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3C:

Chromosomal conformation capture

bcl-2 :

B cell CLL/lymphoma 2

C/EBPβ:

CCAAT/enhancer-binding protein beta

ChIP:

Chromatin immunoprecipitation

E14.5:

Mouse embryonic day 14.5

EIF3H :

Eukaryotic translation initiation factor 3 subunit H

EMSA:

Electrophoretic mobility shift assay

ERG :

v-ETS erythroblastosis virus E26 oncogene homolog

ES:

Embryonic stem

ETV1 :

ETS variant 1

FGFR2 :

Fibroblast growth factor receptor 2

FISH:

Fluorescence in situ hybridization

FOXE1 :

Forkhead box E1

GFP:

Green fluorescent protein

GWAS:

Genome-wide association studies

Ig:

Immunoglobulin

KCNIP3 :

Kv channel interacting protein 3 calsenilin

LCLs:

Lymphoblastoid cell lines

LD:

Linkage disequilibrium

MSMB :

Microseminoprotein beta

MYC :

Proto-oncogene v-myc myelocytomatosis viral oncogene homolog

RACE:

RNA ligase-mediated rapid amplification of cDNA ends

RUNX2 :

Runt-related transcription factor 2

SMAD7 :

SMAD family member 7

SNP:

Single nucleotide polymorphism

TCF7L2 :

Transcription factor 7-like 2

TMPRSS2 :

Transmembrane protease serine 2

TSS:

Transcriptional start site

USF:

Upstream transcription factor

References

  • Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, He HH, Brown M, Liu XS, Davis M et al (2010) 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA 107:9742–9746

    Article  PubMed  CAS  Google Scholar 

  • Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, Leongamornlert DA, Tymrakiewicz M, Jhavar S, Saunders E et al (2009) Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet 41:1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Cazier JB, Sainz J et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38:652–658

    Article  PubMed  CAS  Google Scholar 

  • Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the polycomb group protein EZH2. Oncogene 26:4590–4595

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  • Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S et al (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Buckland PR, Hoogendoorn B, Coleman SL, Guy CA, Smith SK, O’Donovan MC (2005) Strong bias in the location of functional promoter polymorphisms. Hum Mutat 26:214–223

    Article  PubMed  CAS  Google Scholar 

  • Chang BL, Cramer SD, Wiklund F, Isaacs SD, Stevens VL, Sun J, Smith S, Pruett K, Romero LM, Wiley KE et al (2009) Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Hum Mol Genet 18:1368–1375

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Olopade OI (2008) MYC in breast tumor progression. Expert Rev Anticancer Ther 8:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, Ruiz-Ponte C, Enjuanes A, Rosenquist R, Carracedo A et al (2010) Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet 42:132–136

    Article  PubMed  CAS  Google Scholar 

  • Curtin K, Lin WY, George R, Katory M, Shorto J, Cannon-Albright LA, Bishop DT, Cox A, Camp NJ (2009) Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev 18:616–621

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964

    Article  PubMed  CAS  Google Scholar 

  • Desoize B (1994) Anticancer drug resistance and inhibition of apoptosis. Anticancer Res 14:2291–2294

    PubMed  CAS  Google Scholar 

  • Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25:1608–1619

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Heckman CA, Boxer LM (2007) The immunoglobulin heavy-chain gene 3′ enhancers deregulate bcl-2 promoter usage in t(14;18) lymphoma cells. Oncogene 26:2635–2641

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Xiang H, Ma L, Boxer LM (2008) Functional long-range interactions of the IgH 3′ enhancers with the bcl-2 promoter region in t(14;18) lymphoma cells. Oncogene 27:6720–6728

    Article  PubMed  CAS  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  PubMed  CAS  Google Scholar 

  • Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, Pooley KA, Ramus SJ, Kjaer SK, Hogdall E et al (2008) Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 100:962–966

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis A, Mackay A, Reis-Filho JS, Steele D, Iseli C, Stevenson BJ, Jongeneel CV, Valgeirsson H, Fenwick K, Iravani M et al (2006) Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res 8:R56

    Article  PubMed  Google Scholar 

  • Grisanzio C, Freedman ML (2010) Chromosome 8q24-Associated Cancers and MYC. Genes Cancer 1:555–559

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller F, Jakobsdottir M et al (2009) Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet 41:460–464

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637

    Article  PubMed  CAS  Google Scholar 

  • Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X, Kolonel LN, Wu AH, Reich D, Henderson BE (2007a) A common genetic risk factor for colorectal and prostate cancer. Nat Genet 39:954–956

    Article  PubMed  CAS  Google Scholar 

  • Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ et al (2007b) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39:638–644

    Article  PubMed  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  PubMed  CAS  Google Scholar 

  • Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, Chandler I, Vijayakrishnan J, Sullivan K, Penegar S et al (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40:1426–1435

    Article  PubMed  CAS  Google Scholar 

  • Hsu T, Trojanowska M, Watson DK (2004) Ets proteins in biological control and cancer. J Cell Biochem 91:896–903

    Article  PubMed  CAS  Google Scholar 

  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Landan G, Pomerantz M, Jaschek R, Herman P, Reich D, Yan C, Khalid O, Kantoff P, Oh W et al (2009) Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 5:e1000597

    Article  PubMed  Google Scholar 

  • Katoh M (2008) Cancer genomics and genetics of FGFR2 (Review). Int J Oncol 33:233–237

    PubMed  CAS  Google Scholar 

  • Khamlichi AA, Pinaud E, Decourt C, Chauveau C, Cogne M (2000) The 3′ IgH regulatory region: a complex structure in a search for a function. Adv Immunol 75:317–345

    Article  PubMed  CAS  Google Scholar 

  • Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN, Gudmundsson J, Jakobsdottir M, Bergthorsson JT, Sigurdsson A et al (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  PubMed  CAS  Google Scholar 

  • Kuppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5:251–262

    Article  PubMed  Google Scholar 

  • Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Perez L, Schiavi F, Leskela S, Pita G, Milne R, Maravall J, Ramos I et al (2009) The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. PLoS Genet 5:e1000637

    Article  PubMed  Google Scholar 

  • Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59:4180–4184

    PubMed  CAS  Google Scholar 

  • Lou H, Yeager M, Li H, Bosquet JG, Hayes RB, Orr N, Yu K, Hutchinson A, Jacobs KB, Kraft P et al (2009) Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc Natl Acad Sci USA 106:7933–7938

    Article  PubMed  CAS  Google Scholar 

  • Meyer KB, Maia AT, O’Reilly M, Teschendorff AE, Chin SF, Caldas C, Ponder BA (2008) Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6:e108

    Article  PubMed  Google Scholar 

  • Middeldorp A, Jagmohan-Changur S, van Eijk R, Tops C, Devilee P, Vasen HF, Hes FJ, Houlston R, Tomlinson I, Houwing-Duistermaat JJ et al (2009) Enrichment of low penetrance susceptibility loci in a Dutch familial colorectal cancer cohort. Cancer Epidemiol Biomarkers Prev 18:3062–3067

    Article  PubMed  CAS  Google Scholar 

  • Mitelman F (2000) Recurrent chromosome aberrations in cancer. Mutat Res 462:247–253

    Article  PubMed  CAS  Google Scholar 

  • Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786:139–152

    PubMed  CAS  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016

    Article  PubMed  CAS  Google Scholar 

  • Nobrega MA, Ovcharenko I, Afzal V, Rubin EM (2003) Scanning human gene deserts for long-range enhancers. Science 302:413

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Miki Y, Suzuki T, Takagi K, Akahira J, Sakyu T, Watanabe M, Inoue S, Ishida T, Ohuchi N et al (2010) Runx2 in human breast carcinoma: its potential roles in cancer progression. Cancer Sci 101:2670–2675

    Article  PubMed  CAS  Google Scholar 

  • Parlato R, Rosica A, Rodriguez-Mallon A, Affuso A, Postiglione MP, Arra C, Mansouri A, Kimura S, Di Lauro R, De Felice M (2004) An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 276:464–475

    Article  PubMed  CAS  Google Scholar 

  • Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, Nau M, Ravindranath L, Dobi A, Srikantan V et al (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852

    Article  PubMed  CAS  Google Scholar 

  • Pittman AM, Naranjo S, Jalava SE, Twiss P, Ma Y, Olver B, Lloyd A, Vijayakrishnan J, Qureshi M, Broderick P et al (2010) Allelic variation at the 8q23.3 colorectal cancer risk locus functions as a cis-acting regulator of EIF3H. PLoS Genet 6(9):E1001126

    Article  PubMed  Google Scholar 

  • Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, Morreau H, Sullivan K, Fielding S, Twiss P et al (2009) The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 19:987–993

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M et al (2009) The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 41:882–884

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz MM, Shrestha Y, Flavin RJ, Regan MM, Penney KL, Mucci LA, Stampfer MJ, Hunter DJ, Chanock SJ, Schafer EJ et al (2010) Analysis of the 10q11 cancer risk locus implicates MSMB and NCOA4 in human prostate tumorigenesis. PLoS Genet 6:e1001204

    Article  PubMed  Google Scholar 

  • Reeves JR, Dulude H, Panchal C, Daigneault L, Ramnani DM (2006) Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy. Clin Cancer Res 12:6018–6022

    Article  PubMed  CAS  Google Scholar 

  • Rivas M, Mellstrom B, Torres B, Cali G, Ferrara AM, Terracciano D, Zannini M, Morreale de Escobar G, Naranjo JR (2009) The DREAM protein is associated with thyroid enlargement and nodular development. Mol Endocrinol 23:862–870

    Article  PubMed  CAS  Google Scholar 

  • Sequeira MJ, Morgan JM, Fuhrer D, Wheeler MH, Jasani B, Ludgate M (2001) Thyroid transcription factor-2 gene expression in benign and malignant thyroid lesions. Thyroid 11:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Sotelo J, Esposito D, Duhagon MA, Banfield K, Mehalko J, Liao H, Stephens RM, Harris TJ, Munroe DJ, Wu X (2010) Long-range enhancers on 8q24 regulate c-Myc. Proc Natl Acad Sci USA 107:3001–3005

    Article  PubMed  CAS  Google Scholar 

  • ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    Article  PubMed  Google Scholar 

  • Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, Barnetson RA, Theodoratou E, Cetnarskyj R, Cartwright N et al (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40:631–637

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A et al (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310–315

    Article  PubMed  CAS  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W et al (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39:984–988

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K et al (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40:623–630

    Article  PubMed  CAS  Google Scholar 

  • Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M, Hines S, Healey CS et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507

    Article  PubMed  CAS  Google Scholar 

  • Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, Bjorklund M, Wei G, Yan J, Niittymaki I et al (2009) The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41:885–890

    Article  PubMed  CAS  Google Scholar 

  • Udler MS, Meyer KB, Pooley KA, Karlins E, Struewing JP, Zhang J, Doody DR, MacArthur S, Tyrer J, Pharoah PD et al (2009) FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation. Hum Mol Genet 18:1692–1703

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-acting enhancers. Nature 461:199–205

    Article  PubMed  CAS  Google Scholar 

  • Wasserman NF, Aneas I, Nobrega MA (2010) An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res 20:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Willis TG, Dyer MJ (2000) The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96:808–822

    PubMed  CAS  Google Scholar 

  • Wright JB, Brown SJ, Cole MD (2010) Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 30:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Xiang H, Noonan EJ, Wang J, Duan H, Ma L, Michie S, Boxer LM (2011) The immunoglobulin heavy chain gene 3′ enhancers induce Bcl2 deregulation and lymphomagenesis in murine B cells. Leukemia 2011:24

    Google Scholar 

  • Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–649

    Article  PubMed  CAS  Google Scholar 

  • Yeager M, Xiao N, Hayes RB, Bouffard P, Desany B, Burdett L, Orr N, Matthews C, Qi L, Crenshaw A et al (2008) Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum Genet 124:161–170

    Article  PubMed  CAS  Google Scholar 

  • Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E et al (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39:989–994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Nobrega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wasserman, N.F., Nobrega, M.A. (2012). Cis-Regulatory Variation and Cancer. In: Ahituv, N. (eds) Gene Regulatory Sequences and Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1683-8_10

Download citation

Publish with us

Policies and ethics