Skip to main content

Life cycle assessment of crop production

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

The “environmental footprint” of crop production includes a wide range of different impacts such as nitrate leaching, ammonia volatilization, greenhouse gas emissions, or energy consumption, which itself may contribute to different environmental effects such as eutrophication, acidification, and global warming. The life cycle assessment (LCA) methodology is particularly suitable to examine and analyze the “environmental footprint,” because LCA is an inventory and evaluation of all environmental impacts (emissions and resource consumption) along the life cycle of a product from “cradle to grave.” For fertilizer, this means the inclusion of raw material extraction, through production to application. Today, LCA is a standardized methodology that is mainly used to compare different alternatives (products or services) and to determine their environmental hot spots.

A complete LCA study aims at including all potential environmental impacts from crop production systems eutrophication, off-site acidification, global warming, toxicity, and resource consumption (land, water, minerals, fossil fuels). The LCA approach is often applied now to determine the so-called “carbon footprint” of products or production systems. Carbon footprint studies of crop production are particularly critical, because it is not only the energy-related CO2 emissions that are relevant. Other specific issues to be considered include: (1) direct and indirect nitrous oxide (N2O) emissions; (2) potential land-use change impacts (e.g., CO2 from deforestation); (3) varying greenhouse gas emissions from different fertilizers and fertilizer production technologies, and finally (4) the CO2 fixation in crops, which is only accountable if fossil fuels are replaced by bioenergy sources. This chapter gives examples of LCA and carbon footprint calculations of winter wheat produced in Europe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson, K., and T. Ohlsson. 1999. Life cycle assessment of bread produced on different scales. The International Journal of Life Cycle Assessment 4: 25–40.

    Article  Google Scholar 

  • Audsley, E. 1997. Harmonisation of environmental life cycle assessment for agriculture: Final report. Concerted Action AIR3-CT94-2028, Silsoe Research Institute, Silsoe, UK.

    Google Scholar 

  • Bellarby, J., B. Foereid, A. Hastings, and P. Smith. 2008. Cool farming: Climate impacts of agriculture and mitigation potential. Amsterdam: Greenpeace International.

    Google Scholar 

  • Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes. 2002. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16(4): 1080.

    Article  Google Scholar 

  • Brentrup, F. 2003. Life cycle assessment to evaluate the environmental impact of arable crop production. Cuvillier Verlag Göttingen: Hannover University.

    Google Scholar 

  • Brentrup, F., and C. Palliere. 2008. GHG emissions and energy efficiency in European nitrogen fertilizer production and use. In: Proceedings of the international fertiliser society conference, Cambridge, Dec 2008.

    Google Scholar 

  • Brentrup, F., J. Küsters, J. Lammel, and H. Kuhlmann. 2000. Methods to estimate on-field nitrogen emissions from crop production as input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5: 349–357.

    Article  CAS  Google Scholar 

  • Brentrup, F., J. Küsters, J. Lammel, and H. Kuhlmann. 2002a. Life cycle impact assessment of land use based on the Hemeroby concept. The International Journal of Life Cycle Assessment 7: 339–348.

    Article  Google Scholar 

  • Brentrup, F., J. Küsters, J. Lammel, and H. Kuhlmann. 2002b. Life cycle impact assessment of abiotic resource consumption—Conceptual considerations. The International Journal of Life Cycle Assessment 7: 301–307.

    Article  Google Scholar 

  • Brentrup, F., J. Küsters, J. Lammel, and H. Kuhlmann. 2004a. Investigation of the environmental impact of agricultural crop production using the Life Cycle Assessment (LCA) methodology. Part I: Development of an LCA method tailored to agricultural crop production. European Journal of Agronomy 20: 247–264.

    Article  Google Scholar 

  • Brentrup, F., J. Küsters, J. Lammel, P. Barraclough, and H. Kuhlmann. 2004b. Investigation of the environmental impact of agricultural crop production using the Life Cycle Assessment (LCA) methodology. Part II: Application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production. European Journal of Agronomy 20: 265–279.

    Article  Google Scholar 

  • Burney, J.A., S.J. Davis, and D.B. Lobell. 2010. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences 107(26): 12052–12057.

    Article  CAS  Google Scholar 

  • Cederberg, C. 1998. Life cycle assessment of milk production—A comparison of conventional and organic farming. SIK Report no. 643, The Swedish Institute for Food and Biotechnology (SIK), Gothenburg, Sweden.

    Google Scholar 

  • Commission of the European Communities (CEE). 1999. Directions towards sustainable agriculture COM (1999) 22 final. Brussels: Commission of the European Communities.

    Google Scholar 

  • Consoli, F., D. Allen, I. Boustead, J. Fava, W. Franklin, A.A. Jensen, N. de Oude, R. Parrish, R. Perriman, D. Postlethwaite, B. Quay, J. Séguin, and B. Vignon (eds.). 1993. Guidelines for life cycle assessment: A code of practice. Brussels: Society of Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  • Curran, M.A. 1996. The history of LCA. In Environmental life cycle assessment, ed. M.A. Curran. New York: McGraw-Hill.

    Google Scholar 

  • Erisman, J.W., M.A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter. 2008. How a century of ammonia synthesis has changed the world. Nature Geoscience 1: 636–639.

    Article  CAS  Google Scholar 

  • European Chemical Industry Ecology and Toxicology Centre (ECETOC). 1994. Ammonia emissions to air in Western Europe. Technical Report no. 62, ECETOC, Brussels, Belgium.

    Google Scholar 

  • European Environment Agency (EEA). 1998. Europe’s environment: The second assessment. Copenhagen: EEA.

    Google Scholar 

  • European Environment Agency (EEA). 2008. http://themes.eea.europa.eu/IMS/ISpecs/ISpecification20041001122413/IAssessment1188820975411/view_content. Accessed 31 May 2010.

  • Food and Agriculture Organization of the United Nations (FAO). 2003. World agriculture: Towards 2015/2030, an FAO perspective. London: Earthscan Publications Ltd.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). 2006. World agriculture: Towards 2030/2050, an FAO perspective. Interim Report, FAO, Rome.

    Google Scholar 

  • Goedkoop, M., and R. Spriensma. 1999. The Eco-Indicator 99: A damage oriented method of life cycle impact assessment methodology report. Amersfoort: Pré Consultants B.V.

    Google Scholar 

  • Greef, J.M., F. Hansen, G. Pasda, and W. Diepenbrock. 1993. Die Strahlungs-, Energie- und Kohlendioxidbindung landwirtschaftlicher Kulturpflanzen—Ergebnisse und Modellrechnungen. Berichte überLandwirtstchaft 71: 554–566.

    Google Scholar 

  • Guinée, J. 1996. Data for the normalization step within life cycle assessment of products. CML Paper no. 14 (revised version), Centre of Environmental Science (CML), Leiden, The Netherlands.

    Google Scholar 

  • Guinée, J.B. 2001. Life cycle assessment: An operational guide to the ISO standards. The Netherlands: Centre of Environmental Science (CML), Leiden University.

    Google Scholar 

  • Hauschild, M. 2000. Estimating pesticide emissions for LCA of agricultural products. In Agricultural data for life cycle assessments, vol. 2, ed. B.P. Weidema and M.J.G. Meeusen. The Hague: Agricultural Economics Research Institute (LEI). Report 2.00.01.

    Google Scholar 

  • Hodgson, J.A., W.E. Kunin, C.D. Thomas, T.G. Benton, and D. Gabriel. 2010. Comparing organic farming and land sparing: Optimizing yield and butterfly populations at a landscape scale. Ecology Letters 13(11): 1358–1367.

    Article  Google Scholar 

  • Huijbregts, M.A.J. 2001. Uncertainty and variability in environmental life cycle assessment. The Netherlands: University of Amsterdam.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2006. 2006 IPCC guidelines for national greenhouse gas inventories, vol. 4. Agriculture, forestry and other land use. Hayama: IGES.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2007. Technical summary. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, ed. S.D. Solomon, M. Qin, Z. Manning, M. Chen, K.B. Marquis, M.T. Averyt, and H.L. Miller. Cambridge: Cambridge University Press.

    Google Scholar 

  • International Fertilizer Association (IFA). 2007. Sustainable management of the nitrogen cycle in agriculture and mitigation of reactive nitrogen side effects. Paris: IFA.

    Google Scholar 

  • International Organization for Standardization (ISO). 2000. Environmental management—Life cycle assessment—Life cycle impact assessment, International Standard ISO 14042:2000. Geneva: ISO.

    Google Scholar 

  • Isermann K (1990) Ammonia emissions from agriculture as part of its nitrogen balance and suggested solutions for their mitigation. Federal Agricultural Research Centre. Braunschweig, Germany. (in German)

    Google Scholar 

  • Johnston, A.E. 1994. The Rothamsted classical experiments. In Long-term experiments in agricultural and ecological sciences, ed. R.A. Leigh and A.E. Johnston. Wallingford: CAB International.

    Google Scholar 

  • Jolliet, O., and P. Crettaz. 1997. Critical Surface-Time 95: A life cycle impact assessment methodology including fate and exposure. Laussane: École Polytechnique Fédérale de Lausanne.

    Google Scholar 

  • Kindred, D., P. Berry, O. Burch, and R. Sylvester-Bradley. 2008. Effects of nitrogen fertiliser use on greenhouse gas emissions and land use change. Aspects of Applied Biology 88: 53–56.

    Google Scholar 

  • Köllner, T. 2000. Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. Journal of Cleaner Production 8: 293–311.

    Article  Google Scholar 

  • Kowarik I (1999) Naturalness, nearness to nature and hemeroby as evaluation criteria. In Handbook for nature conservation, ed. W. Konold, R. Böcker, and U. Hampicke. Ecomed, Landsberg, Germany. (in German).

    Google Scholar 

  • Küsters, J., and T. Jenssen. 1998. Selecting the right fertilizer from an environmental life cycle perspective. In: International Fertilizer Industry Association (IFA) 1998 technical conference, Merrakech, pp. 290–296.

    Google Scholar 

  • Lindeijer, E.W., M. van Kampen, P.J. Fraanje, H.F. van Dobben, G.J. Nabuurs, E.P.A.G. Schouwenberg, A.H. Prins, N. Dankers, and M.F. Leopold. 1998. Biodiversity and life support indicators land use impacts in LCA. Delft: Public Works and Watermanagement, Ministry of Transport.

    Google Scholar 

  • Udo de Haes, H.A., O. Jolliet, G. Finnveden, M. Hauschild, W. Krewitt, and R. Müller-Wenk. 1999a. Best available practice regarding impact categories and category indicators in life cycle impact assessment, Part I. The International Journal of Life Cycle Assessment 4: 66–74.

    Article  Google Scholar 

  • Udo de Haes, H.A., O. Jolliet, G. Finnveden, M. Hauschild, W. Krewitt, and R. Müller-Wenk. 1999b. Best available practice regarding impact categories and category indicators in life cycle impact assessment, Part II. The International Journal of Life Cycle Assessment 4: 167–174.

    Article  Google Scholar 

  • UNECE/EMEP. 2007. EMEP/CORINAIR Emission inventory guidebook—2007. Technical Report No 16/2007, EEA (European Environment Agency), Copenhagen, Denmark.

    Google Scholar 

  • United Nations Division for Sustainable Development (UN-DSD). 2000. Agenda 21. Chapter 14: Promoting sustainable agriculture and rural development. United Nations (UN), New York, USA.

    Google Scholar 

  • West, P., H. Gibbs, C. Monfreda, J. Wagner, C.C. Barford, S.R. Carpenter, and J.A. Foley. 2010. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proceedings of the National Academy of Sciences 107(46): 19645–19648.

    Article  CAS  Google Scholar 

  • World Commission on Environment and Development (WCED). 1987. Our Common Future (the Brundtland Report). Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Brentrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Brentrup, F. (2012). Life cycle assessment of crop production. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_4

Download citation

Publish with us

Policies and ethics