Skip to main content

Regulation of Tumor Dormancy and Role of Microenvironment: A Mathematical Model

  • Chapter
  • First Online:
Book cover Systems Biology of Tumor Dormancy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 734))

Abstract

Herein, a mathematical model of a molecular control system for the regulation of secondary tumors is formulated and analyzed to explore how secondary tumors can be controlled by a primary tumor with/without a surgery and the microenvironment. This control system is composed of fibroblast growth factor-2 (FGF2), urokinase-type plasminogen activator (uPA), plasmin, transforming growth factor-beta (TGFβ), latent TGFβ (LTGFβ), and tumor density. The control of secondary tumors by primary tumors was first modeled by Boushaba, Nilsen-Hamiton and Levine in [46]. The model is based on the idea that the vascularization of a secondary tumor can be suppressed by inhibitors from a larger primary tumor. The emergence of tumors at secondary sites 5–7 cm from a primary site was observed after surgical removal of the primary tumor in silico. The model supports the notion that the fate of secondary tumors after surgery depends on the distance from the primary tumor and the surrounding microenvironment. As such, the primary tumor did not influence the growth of remote secondary tumors, but it could effectively suppress the growth of the secondary tumors if they were too close to the primary tumor, even after it was removed. Thus, the model predicts the emergence of secondary tumors after the excision of the primary tumor when the distance between these tumors is in the “distance window.” It also predicts that the growth behaviors of the secondary tumors depend on the local microenvironment. Based on these findings, we propose several treatment options for better clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):2834–2846

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  3. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    Article  PubMed  CAS  Google Scholar 

  4. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010

    Article  PubMed  Google Scholar 

  5. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91(1):80–85

    Article  PubMed  CAS  Google Scholar 

  6. Kovacs AF, Ghahremani MT, Stefenelli U, Bitter K (2003) Postoperative chemotherapy with cisplatin and 5-fluorouracil in cancer of the oral cavity and the fluoropharynx-long-term results. J Chemother 15(5):495–502

    PubMed  CAS  Google Scholar 

  7. Leaf C (2004) Why we’re losing the war on cancer (and how to win it). Fortune 149:76–97

    PubMed  Google Scholar 

  8. Sporn MB (1996) The war on cancer. Lancet 347:1377–1381

    Article  PubMed  CAS  Google Scholar 

  9. Glotzman J, Mikula M, Andreas E, Schulte-Hermann R, Foisner R, Beug H et al (2004) Molecular aspects of epithelial cell plasticity; implications for local tumor invasion and metastasis. Mutat Res 566:9–20

    Article  Google Scholar 

  10. Boudreau N, Bissell MJ (1998) Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol 10(5):640–646

    Article  PubMed  CAS  Google Scholar 

  11. Wicha MS (2006) Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 12(19): 5606–5607

    Article  PubMed  Google Scholar 

  12. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64(20):7336–7345

    Article  PubMed  CAS  Google Scholar 

  13. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  PubMed  CAS  Google Scholar 

  14. Godlewski J, Nowicki M, Bronisz A, Palatini GNJ, Lay MD et al (2010) MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37:620–632

    Article  PubMed  CAS  Google Scholar 

  15. Kim Y, Roh S, Lawler S, Friedman A (2011) miR451 and AMPK mutual antagonism in glioma cell migration and proliferation: a mathematical model. PLoS One 6(12):e28293

    Article  PubMed  CAS  Google Scholar 

  16. Aguirre-Ghiso J, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89–104

    Article  PubMed  CAS  Google Scholar 

  17. Liu D, Aguirre-Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1(5):445–457

    Article  PubMed  CAS  Google Scholar 

  18. Aguirre-Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21(16):2513–2524

    Article  PubMed  Google Scholar 

  19. Coffey JC, Wang JH, Smith MJ, Bouchier-Hayes D, Cotter TG, Redmond HP (2003) Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol 4(12):760–768

    Article  PubMed  CAS  Google Scholar 

  20. Oliver RT (1995) Does surgery disseminate or accelerate cancer? Lancet 346(8989):1506–1507

    Article  PubMed  CAS  Google Scholar 

  21. Demicheli R, Valagussa P, Bonadonna G (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85(4):490–492

    Article  PubMed  CAS  Google Scholar 

  22. Braunschweiger PG, Schiffer LM, Betancourt S (1982) Tumor cell proliferation and sequential chemotherapy after partial tumor resection in C3H/HeJ mammary tumors. Breast Cancer Res Treat 2(4):323–329

    Article  Google Scholar 

  23. Fisher B, Gunduz N, Coyle J, Rudock C, Saffer E (1989) Presence of a growth-stimulating factor in serum following primary tumor removal in mice. Cancer Res 49(8):1996–2001

    PubMed  CAS  Google Scholar 

  24. Fisher B, Saffer E, Rudock C, Coyle J, Gunduz N (1989) Effect of local or systemic treatment prior to primary tumor removal on the production and response to a serum growth-stimulating factor in mice. Cancer Res 49(8):2002–2004

    PubMed  CAS  Google Scholar 

  25. Gunduz N, Fisher B, Saffer EA (1979) Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res 39(10):3861–3865

    PubMed  CAS  Google Scholar 

  26. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153

    Article  PubMed  CAS  Google Scholar 

  27. Coffey JC, Wang JH, Cotter TG, Redmond HP (2003) Cytoreductive surgery enhances tumorogenicity by downregulating mitochondrial apoptosis. Ann Surg Oncol 10:S24

    Google Scholar 

  28. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  29. Maniwa Y, Kanki M, Okita Y (2000) Importance of the control of lung recurrence soon after surgery of pulmonary metastases. Am J Surg 179(2):122–125

    Article  PubMed  CAS  Google Scholar 

  30. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  31. Brivio F, Lissoni P, Alderi G, Barni S, Lavorato F, Fumagalli L (1996) Preoperative interleukin-2 subcutaneous immunotherapy may prolong the survival time in advanced colorectal cancer patients. Oncology 53(4):263–268

    Article  PubMed  CAS  Google Scholar 

  32. Brivio F, Lissoni P, Perego MS, Lissoni A, Fumagalli L (2001) Abrogation of surgery-induced IL-6 hypersecretion by presurgical immunotherapy with IL-2 and its importance in the prevention of postoperative complications. J Biol Regul Homeost Agents 15(4):370–374

    PubMed  CAS  Google Scholar 

  33. Cao Y, O’Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J (1998) Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest 101(5):1055–1063

    Article  PubMed  CAS  Google Scholar 

  34. MacLean GD, Longenecker BM (1994) New possibilities for cancer therapy with advances in cancer immunology. Can J Oncol 4(2):249–254

    PubMed  CAS  Google Scholar 

  35. Mandelboim O, Feldman M, Eisenbach L (1992) H-2K double transfectants of tumor cells as antimetastatic cellular vaccines in heterozygous recipients. Implications for the T cell repertoire. J Immunol 148(11):3666–3673

    PubMed  CAS  Google Scholar 

  36. Coffey JC, Doyle M, O’Mahony L et al (2001) Probiotics confer protection against perioperative metastatic tumour growth. Ann Surg Oncol 89:643

    Google Scholar 

  37. Costa ML, Redmond HP, Bouchier-Hayes DJ (2001) Taurolidine improves survival by abrogating the accelerated development and proliferation of solid tumors and development of organ metastases from circulating tumor cells released. J Surg Res 101(2):111–119

    Article  PubMed  Google Scholar 

  38. Zetter BR (1998) Angiogenesis and tumor metastasis, review. Ann Rev Med 49:407–422

    Article  PubMed  CAS  Google Scholar 

  39. Finn OJ (2006) Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol Res 36(1–3):73–82

    Article  PubMed  CAS  Google Scholar 

  40. Weinhold KJ, Miller DA, Wheelock EF (1979) The tumor dormant state. Comparison of L5178Y cells used to establish dormancy with those that emerge after its termination. J Exp Med 149(3):745–757

    Article  PubMed  CAS  Google Scholar 

  41. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    Article  PubMed  CAS  Google Scholar 

  42. Eikenberry S, Thalhauser C, Kuang Y (2009) Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS Comput Biol 5:e1000362

    Article  PubMed  Google Scholar 

  43. Weinhold KJ, Goldstein LT, Wheelock EF (1979) The tumor dormant state. Quantitation of L5178Y cells and host immune responses during the establishment and course of dormancy in syngeneic DBA/2 mice. J Exp Med 149(3):732–744

    Article  PubMed  CAS  Google Scholar 

  44. Matsuzawa A, Takeda Y, Narita M, Ozawa H (1991) Survival of leukemic cells in a dormant state following cyclophosphamide-induced cure of strongly immunogenic mouse leukemia (DL811). Int J Cancer 49(2):303–309

    Article  PubMed  CAS  Google Scholar 

  45. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437(7055):141–146

    Article  PubMed  CAS  Google Scholar 

  46. Boushaba K, Levine HA, Nilsen-Hamilton M (2006) A mathematical model for the regulation of tumor dormancy based on enzyme kinetics. Bull Math Biol 68(7):1495–1526

    Article  PubMed  CAS  Google Scholar 

  47. Kim Y, Boushaba K (2011) An enzyme kinetics model of tumor dormancy, regulation of secondary metastases. DCDS-S 4(6):1465–1498

    CAS  Google Scholar 

  48. Kim Y, Stolarska M, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106:353–379

    Article  PubMed  Google Scholar 

  49. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274

    PubMed  CAS  Google Scholar 

  50. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9:325–342

    Article  PubMed  Google Scholar 

  51. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  PubMed  Google Scholar 

  52. Giorgi VD, Massai D, Gerlini G, Mannone F, Quercioli E, Carli P (2003) Immediate local and regional recurrence after the excision of a polypoid melanoma: tumor dormancy or tumor activation? Dermatol Surg 29:664–667

    Article  PubMed  Google Scholar 

  53. Cheng J, Weiner L (2003) Tumors and their microenvironments: tilling the soil commentary re: A.M. Scott et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9:1590–1595

    PubMed  CAS  Google Scholar 

  54. Sadlonova A, Novak Z, Johnson MR, Bowe DB, Gault SR, Page GP et al (2005) Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7(1):R46–R59

    Article  PubMed  Google Scholar 

  55. Samoszuk M, Tan J, Chorn G (2005) Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts. Breast Cancer Res 7:R274–R283

    Article  PubMed  CAS  Google Scholar 

  56. Yashiro M, Ikeda K, Tendo M, Ishikawa T, Hirakawa K (2005) Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells. Breast Cancer Res Treat 90(3):307–313

    Article  PubMed  Google Scholar 

  57. Kim Y, Stolarska M, Othmer HG (2007) A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Math Meth Appl Sci 17:1773–1798

    Article  CAS  Google Scholar 

  58. Demicheli R (2001) Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11(4):297–306

    Article  PubMed  CAS  Google Scholar 

  59. Takeda Y, Nakabayashi M (1974) Physicochemical and biological properties of human and canine plasmins. J Clin Invest 53:154–162

    Article  PubMed  CAS  Google Scholar 

  60. Davis B (1990) Reinforced random walks. Probab Theory Related Fields 84:203–229

    Article  Google Scholar 

  61. Othmer HG, Stevens A (1997) Aggregation, blow up and collapse: the ABC’s of taxis and reinforced random walks. SIAM J Appl Math 57:1044–1081

    Article  Google Scholar 

  62. Levine HA, Tucker AL, Nilsen-Hamilton M (2002) A mathematical model for the role of cell signaling and transduction in the initiation of angiogenesis. Growth Factors 20:155–175

    Article  PubMed  CAS  Google Scholar 

  63. Filion RJ, Popel AS (2004) A reaction–diffusion model of basic fibroblast growth factor integrations with cell surface receptors. Ann Biochem Eng 32:645–663

    Google Scholar 

  64. He L, Niemeyer B (2003) A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol Prog 19:544–548

    Article  PubMed  CAS  Google Scholar 

  65. Beck LS, DeGuzman WPL, Lee YX, Siegel MW, Amento EP (1993) One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest 92:2841–2849

    Article  PubMed  CAS  Google Scholar 

  66. Coffey RJ, Kost LJ, Lyons RM, Moses HL, LaRusso NF (1987) Hepatic processing of transforming growth factor/3 in the rat. J Clin Invest 80:750–757

    Article  PubMed  CAS  Google Scholar 

  67. Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86:1976–7684

    Article  PubMed  CAS  Google Scholar 

  68. Zioncheck SA, Chen TF, Richardson L, Mora-Worms M, Lucas C, Lewis D et al (1994) Pharmacokinetics and tissue distribution of recombinant human transforming growth factor beta 1 after topical and intravenous administration in male rats. Pharm Res 11(2):213–220

    Article  PubMed  CAS  Google Scholar 

  69. Lazarous DF, Shou M, Stiber JA, Dadhania DM, Thirumurti V, Hodge E et al (1997) Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 36(1):78–85

    Article  PubMed  CAS  Google Scholar 

  70. Edelman ER, Nugent MA, Karnovsky MJ (1993) Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci 90(4):1513–1517

    Article  PubMed  CAS  Google Scholar 

  71. Whalen GF, Shing Y, Folkman J (1989) The fate of intravenously administered bFGF and the effect of heparin. Growth Factors 1:157–164

    Article  PubMed  CAS  Google Scholar 

  72. Chandler WL, Alessi MC, Aillaud MF, Vague P, Juhan-Vague I (2000) Formation, inhibition and clearance of plasmin in vivo. Haemostasis 30(4):204–218

    PubMed  CAS  Google Scholar 

  73. Nugent MA, Edelman ER (1992) Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry 31:8876–8883

    Article  PubMed  CAS  Google Scholar 

  74. Anderson SG, Buckingham RH, Kurland CG (1983) Does codon composition influence ribosome function? EMBO 3:91–94

    Google Scholar 

  75. Pavlov MY, Ehernberg M (1996) Rate of translation of natural mRNAs in an optimized in vitro system. Arch Biochem Biophys 328:9–16

    Article  PubMed  CAS  Google Scholar 

  76. Castello R, Estelles A, Vazquez C, Falco C, Espana F, Almenar SM et al (2002) Quantitative real-time reverse transcription-PCR assay for urokinase plasminogen activator, plasminogen activator inhibitor type 1, and tissue metalloproteinase inhibitor type 1 gene expressions in primary breast cancer. Clin Chem 48:1288–1295

    PubMed  CAS  Google Scholar 

  77. Ellis V, Behrendt N, Dano K (1991) Plasminogen activation by receptor-bound urokinase. a kinetic study with both cell-associated and isolated receptor. J Biol Chem 266(19):12752–12758

    PubMed  CAS  Google Scholar 

  78. Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M (2001) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63:801–863

    Article  PubMed  CAS  Google Scholar 

  79. Lijnen HR, Carmeliet P, Bouche A, Moons L, Ploplis VA, Plow E et al (1996) Restoration of thrombolytic potential in plasminogen-deficient mice by bolus administration of plasminogen. Blood 88(3):870–876

    PubMed  CAS  Google Scholar 

  80. Ploplis VA, Carmeliet P, Vazirzadeh S, Vlaenderen IV, Moons L, Plow EF et al (1995) Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 92:2585–2593

    Article  PubMed  CAS  Google Scholar 

  81. Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naugnton GK (1999) Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab 1:265–279

    Article  PubMed  CAS  Google Scholar 

  82. Crescenzo GD, Pham PL, Durocher Y, O’Connor-McCourt MD (2003) Transforming growth factor-beta (TGF-beta) binding to the extracellular domain of the type II TGF-beta receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding. J Mol Biol 328(5):1173–1183

    Article  PubMed  Google Scholar 

  83. Crescenzo GD, Grothe S, Zwangstra J, Tsang M, O’Connor-McCourt MD (2001) Real-time monitoring of the interactions of transforming growth factor-beta (TGF-beta) isoforms with latency-associated protein and the ectodomains of the TGF-beta Type II and III receptors reveals different kinetic models and stoichiometries of binding. J Biol Chem 276(32):29632–29643

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

K.Boushaba would like to thank Dr. Howard Levine and Dr. Marit Nilsen Hamilton for many discussions. Y. Kim was supported in part by the Faculty Research Grant at the University of Michigan-Dearborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Boushaba PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, Y., Boushaba, K. (2013). Regulation of Tumor Dormancy and Role of Microenvironment: A Mathematical Model. In: Enderling, H., Almog, N., Hlatky, L. (eds) Systems Biology of Tumor Dormancy. Advances in Experimental Medicine and Biology, vol 734. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1445-2_11

Download citation

Publish with us

Policies and ethics