Skip to main content

How Have Scientists Explained the Amino Acid Chirality?

  • Chapter
  • First Online:
Book cover Stardust, Supernovae and the Molecules of Life

Part of the book series: Astronomers' Universe ((ASTRONOM))

  • 1199 Accesses

Abstract

In this chapter several of the models that purport to ­describe how amino acids are produced are discussed. Specifically, the means by which circularly polarized light could create chiral amino acids, both on Earth and in outer space, are detailed. Next, several models that rely on the weak interaction to select chirality are described. And, finally, the possibility that chiral selection might have occurred on solid surfaces is mentioned. In each case, the experimental documentation for the hypothetical model is presented. The chapter then discusses amplification mechanisms, notably, autocatalysis, which could operate either in outer space or on Earth. Finally, experiments that have demonstrated amplification toward homochirality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Miller, The Production of Amino Acids Under Possible Primitive Earth Conditions, Science 117, 528 (1953)

    Article  ADS  Google Scholar 

  2. S.L. Miller and H.C. Urey, Science 130, 245 (1959)

    Google Scholar 

  3. G. Wachterhauser, Before Enzymes and Templates: Theory of Surface Metabolism, Microbiol. Rev. 52, 452 (1988)

    Article  Google Scholar 

  4. G. Wachterhauser, Groundworks for an Evolutionary Biochemistry: the Iron–Sulphur World, Prog. Biophys. Mol. Biol. 58, 85 (1992)

    Article  Google Scholar 

  5. J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. McCall, S. Clark, F. Menard, and M. Tamura, Circular Polarization in Star-Formation Regions: Implications for Biomolecular Homochirality, Science 281, 672 (1998)

    Article  ADS  Google Scholar 

  6. Y. Takano, J.-I. Takahashi, T. Kaneko, K. Marumo, and K. Kobayashi, Asymmetric Synthesis of Amino Acid Precursors in Interstellar Complex Organics by Circularly Polarized Light, Earth and Planetary Science Letters 254, 106 (2007)

    Article  ADS  Google Scholar 

  7. W. Bonner, The Origin and Amplification of Biomolecular Chirality, Orig. Life Evol. Biosphere 21, 59 (1991)

    Article  ADS  Google Scholar 

  8. J. Bailey, Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality, Orig. Life Evol. Biosphere 31, 167 (2001)

    Article  ADS  Google Scholar 

  9. T.M. Gledhill and A. McCall, Circular polarization by scattering from spheroidal dust grains., Mon. Not. R. Astron. Soc. 314, 123 (2000)

    Article  ADS  Google Scholar 

  10. P.J. Hakala, V. Piirola, O. Vilhu, J.P. Osborne, and D.C. Hannikainen, Record Circular Polarization Discovered in the Shortest Period ­Magnetic Cataclysmic Variable RE 1307+535, Mon. Not. R. Astron. Soc. 271, L41 (1994)

    Google Scholar 

  11. P. Ehrenfreund, M.P. Bernstein, J.P. Dworkin, S.A. Sandford, and L.J. Allamandola, The Photostability of Amino Acids in Space, Astrophys. J. 550, L95 (2001)

    ADS  Google Scholar 

  12. P. deMarcellus, C. Meinert, M. Nuevo, J.-J. Filippi, G. Danger, D. Deboffle, L. Nahon, L.L.S. d’Hendecourt, and U.J. Meierhenrich, Non-racemic amino acide production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. 727, L1 (2011).

    Article  Google Scholar 

  13. S.F. Mason and G.E. Tranter, The Electroweak Origin of Biomolecular Handedness, Proc. R. Soc. London A397, 45 (1985)

    ADS  Google Scholar 

  14. S.F. Mason and G.E. Tranter, Energy Inequivalence of Peptide Enantiomers from Parity Non-Conservation, J. Chem. Soc. Chem. Comm. 117 (1983)

    Google Scholar 

  15. S.F. Mason and G.E. Tranter, The Parity-Violating Energy Difference Between Enantiomeric Molecules. Molec. Phys. 53, 1091 (1984)

    Article  ADS  Google Scholar 

  16. S.F. Mason, Origins of Biomolecular Handedness, Nature 311, 19 (1984)

    Article  ADS  Google Scholar 

  17. G.E. Tranter, Parity Violating Energy Differences of Chiral Molecules and the Origin of Biomolecular Chirality, Nature 318, 172 (1985)

    Article  ADS  Google Scholar 

  18. G.E. Tranter, The Parity Violating Energy Difference Between Enantiomeric Reactions, Chem. Phys. Lett. 115, 286 (1985)

    Article  ADS  Google Scholar 

  19. G.E. Tranter, The Parity Violating Energy Difference Between the Enantiomers of α-Amino Acids, Chem. Phys. Lett. 120, 93 (1985)

    Article  ADS  Google Scholar 

  20. G.E. Tranter, Parity Violating Energy Differences and the Origin of Biomolecular Chirality, J. Theor. Biol. 119, 467 (1986)

    Article  Google Scholar 

  21. G.E. Tranter, The Enantio-Preferential Stabilization of D-Ribose from Parity Violation, Chem. Phys. Lett. 135, 279 (1987)

    Article  ADS  Google Scholar 

  22. V.I. Gol’danskii and V.V. Kuz’min, Spontaneous Breaking of Mirror Symmetry in Nature and the Origin of Life, Sov. Phys. Usp. 32, 1 (1989). Use of quotes courtesy of the American Institute of Physics, DOI: 10.1070/DU1989v032n01ABEH002674

    Article  ADS  Google Scholar 

  23. B.M. Rode, D. Fitz, and T. Jakschitz, The First Steps of Chemical Evolution Towards the Origin of Life, Chemistry and Biodiversity 4, 2674 (2007)

    Article  Google Scholar 

  24. T.D. Lee and C.N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev. 104, 254 (1956)

    Article  ADS  Google Scholar 

  25. C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, and R.P. Hudson, Experimental Test of Parity Conservation in Beta Decay, Phys. Rev. 105, 1413 (1957)

    Article  ADS  Google Scholar 

  26. F. Vester, T.L.V. Ulbright, and H. Krauch, Optical Activity and Parity Violation in beta-decay, Naturwissenschaften 46, 68 (1959)

    Article  ADS  Google Scholar 

  27. T.L.V. Ulbright and F. Vester, Attempts to Induce Optical Activity with Polarized β-radiation, Tetrahedron 18, 629 (1962)

    Article  Google Scholar 

  28. A.K. Mann and H. Primikov, Chirality of electrons from beta-decay and the left-handed asymmetry of proteins, Origins of Life 11, 255 (1981)

    Article  ADS  Google Scholar 

  29. M. Akaboshi, M. Noda, K. Kawai, H. Maki, and K. Kawamoto, Asymmetrical Radical Formation in D- and L-Alanine Irradiated with Yttrium-90 β-Rays, Orig. Life Evol. Biospheres 9, 181 (1978)

    Article  Google Scholar 

  30. M. Akaboshi, M. Noda, K. Kawai, H. Maki, Y. Ito, and K. Kawamoto, An Approach to the Mechanism of the Asymmetrical Radical Formation in Yttrium-90 β-Irradiated D- and L-Alanines, Orig. Life Evol. Biospheres 11, 23 (1981)

    Article  Google Scholar 

  31. M. Akaboshi, M. Noda, K. Kawai, H. Maki, and K. Kawamoto, Asymmetrical Radical Formation in d- and l-Alanines Irradiated with ­Tritium β-rays, Orig. Life Evol. Biospheres 12, 395 (1982)

    Article  Google Scholar 

  32. E. Conte, Investigation on the Chirality of Electrons from 90Sr-90Y beta-decay and their Asymmetrical Interactions with D- and ­L-Alanines, Nuovo Cimento Letters 44, 641 (1985)

    Article  Google Scholar 

  33. W. Bonner, Parity Violation and the Evolution of Biomolecular Homochirality, Chirality 12, 114 (2000)

    Article  Google Scholar 

  34. G.A. Gusev, K. Kobayashi, E.V. Moiseenko, N.G. Poluhina, T. Saito, T. Ye, V.A. Tsarev, J. Xu, Y. Huang, and G. Zhang, Results of the ­second stage of the investigation of the radiation mechanism of ­chiral influence (RAMBAS-2 experiment). Orig. Life, Evol. Biosph. 38, 509 (2008)

    Article  ADS  Google Scholar 

  35. V.I. Burkov, L.A. Goncharova, G.A. Gusev, K. Kobayashi, E.V. Moiseenko, N.B. Poluhina, T. Saito, V.A. Tsarev, J. Xu, and G. Zhang, First Results of the RAMBAS Experiment on Investigations of the Radiation Mechanism of Chiral Influence, Orig. Life Evol. Biosph. 38, 155 (2008)

    Article  ADS  Google Scholar 

  36. D.B. Cline, Supernova Antineutrino Interactions Cause Chiral Symmetry Breaking and Possibly Homochiral Biomaterials for Life, Chirality 17, S234 (2005)

    Article  Google Scholar 

  37. P. Barqueno and R. Perez de Tudela, The Role of Supernova Neutrinos on Molecular Homochirality, Orig. Life. Evol. Biosph. 37, 253 (2007)

    Article  ADS  Google Scholar 

  38. D.G. Fraser, D. Fitz, T. Jakschitz, and B.M. Rode, Selective Absorption and Chiral Amplification of Amino Acids in Vermiculite Clay—Implications for the Origin of Biochirality, Phys. Chem. Chem. Phys. 13, 831 (2011)

    Article  Google Scholar 

  39. R.M Hazen, Genesis: The Scientific Quest for Life’s Origins, Joseph Henry Press, Washington DC (2005)

    Google Scholar 

  40. F. Frank, On Spontaneous Asymmetric Synthesis, Biochim. Biophys. Acta 11, 459 (1953)

    Article  Google Scholar 

  41. D.K. Kondepudi and G.W. Nelson, Weak Neutral Currents and the Origin of Biomolecular Chirality, Nature 314, 438 (1985)

    Article  ADS  Google Scholar 

  42. K. Soai, T. Shibata, H. Morioka, and K. Choji, Asymmetric ­Autocatalysis and Amplification of Enantiomeric Excess of a Chiral ­Molecule, Nature 378, 767 (1995)

    Article  ADS  Google Scholar 

  43. K. Soai and I. Sato, Asymmetric Autocatalysis and its Application to Chiral Discrimination, Chirality 14, 548 (2002)

    Article  Google Scholar 

  44. R. Breslow and M.S. Levine, Amplification of Enantiomeric Concentrations Under Credible Prebiotic Conditions, Proc. National Acad. Sciences 103, 12979 (2006)

    Article  ADS  Google Scholar 

  45. M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, and L.J. Allamandola, Racemic Amino Acids from the Ultraviolet Photolysis of of Interstellar Ice Analogues, Nature 416, 401 (2002)

    Article  ADS  Google Scholar 

  46. L.J. Allamandola, Chemical Evolution in the Interstellar Medium; Feed Stock in the Solar Systems, in Chemical Evolution Across Space and Time – From the Big Bang to Prebiotic Chemistry, ed. By L. Zaikowski and J.M. Friedrich, 80 (2008)

    Article  ADS  Google Scholar 

  47. D.H. Lee, J.R. Granja, J.A. Martinez, K. Severin, and M.R. Ghadiri, A Self-Replicating Peptide, Nature 382, 525 (1996)

    Article  ADS  Google Scholar 

  48. C.J. Bennett, T. Hama, Y.S. Kim, M. Kawasaki, and R.I. Kaiser, Laboratory Studies on Interstellar and Cometary Ices, Astrophys. J. 727, 27.01 (2011)

    Article  ADS  Google Scholar 

  49. D.E. Woon, Ion-Ice Astrochemistry: Barrierless Low-Energy Deposition Pathways to HCOOH, CH3OH, and CO2on Icy Grain Mantles from Precursor Cations. Astrophys. J. 728, 44–1 (2011)

    Article  ADS  Google Scholar 

  50. R.T. Garrod, S.L.W. Weaver, and E. Herbst, Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model, Astrophys. J. 682, 283 (2008)

    Article  ADS  Google Scholar 

  51. S.P. Mathew, H. Iwamura, and D.G. Blackmond, Amplification of Enantiomeric Excess in a Proline-Mediated Reaction, Angew. Chem. Int. Ed. 43, 3317 (2004)

    Article  Google Scholar 

  52. R.N. Boyd, T. Kajino, and T. Onaka, Supernovae and the Chirality of the Amino Acids, Astrobiology 10, 561 (2010)

    Google Scholar 

  53. R.N. Boyd, T. Kajino, and T. Onaka, Stardust, Supernovae, and the Chirality of the Amino Acids, Int. J. Mod. Sci. 12, 3432 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Boyd .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boyd, R.N. (2012). How Have Scientists Explained the Amino Acid Chirality?. In: Stardust, Supernovae and the Molecules of Life. Astronomers' Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1332-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1332-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1331-8

  • Online ISBN: 978-1-4614-1332-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics