Skip to main content

About the ABC Conjecture and an alternative

  • Chapter
  • First Online:

Abstract

After a detailed discussion of the ABC Conjecture, we discuss three alternative conjectures proposed by Baker in 2004. The third alternative is particularly interesting, because there may be a way to prove it using the methods of linear forms in logarithms.

In memory of Serge Lang

Mathematics Subject Classification(2010): Primary 11D75; Secondary 11J86

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See [GdS07], which is also of interest to non-Dutch readers for a photographic reproduction of the relevant page.

  2. 2.

    In other words, (4) implies the classical result of Siegel and Mahler on the S-unit equation. The innovation of Stewart and Tijdeman was to use Baker’s theorem on linear forms in logarithms, generalized to p-adic logarithms, to make this result effective.

  3. 3.

    If ψ is not explicitly known, one would deduce that there could only be finitely many counterexamples to Fermat’s Last Theorem, but one would not know when to stop looking for one.

  4. 4.

    We have omitted from our table all abc sums with h > 50, since beyond a height of 50 our table is definitely not exhaustive and therefore useless. By November 2009, the project [LPS09] had resulted in an exhaustive search up to height 29. 9337 (i.e., up to c = 1013, apparently improved to 1020 [N09]). Schulmeiss has found some very large abc sums that satisfy (6), the largest of which has a height of 5, 114. Since these sums were not obtained by an exhaustive search, they are less useful to check different versions of the ABC Conjecture.

  5. 5.

    This criterion is closely related to the “merit”, see [GdS07,  dS09]. See also (7) below, which contains the same information as an inequality for the merit.

  6. 6.

    As alluded to in the introduction, the value 1 ∕ 2 may be related to the Riemann Hypothesis. Michel Waldschmidt pointed out to me that the most accessible approach to such a connection may be to construct a sequence of abc sums such that \(h(P) - r(P) \geq h{(P)}^{\theta -\varepsilon }\), given a hypothetical zero of the Riemann zeta function with real part θ > 1 ∕ 2.

  7. 7.

    If ω(c) is the least value among ω(a), ω(b) and ω(c), then \({\omega }_{\mathrm{max}} = \omega (a) + \omega (b)\) and \(\omega (abc) = {\omega }_{\mathrm{max}} + \omega (c) \leq{\omega }_{\mathrm{max}} + \frac{1} {2}(\omega (a) + \omega (b))\).

References

  1. A. Baker, Logarithmic forms and the abc-conjecture, in: Number theory (Diophantine, computational and algebraic aspects), Proceedings of the international conference, Eger, Hungary, July 29–August 2, 1996 (Györy, Kalman et al., ed.), de Gruyter, Berlin, 1998, 37–44.

    Google Scholar 

  2. A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65/3-4 (2004), 253–260.

    Google Scholar 

  3. J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, Sci. Sinica 16 (1973), 157–176.

    Google Scholar 

  4. J. R. Chen, On the Representation of a Large Even Integer as the Sum of a Prime and the Product of at Most Two Primes, II, Sci. Sinica 21 (1978), 421–430.

    Google Scholar 

  5. B. de Smit, http://www.math.leidenuniv.nl/\~desmit/abc/, 2009.

  6. G. Geuze, B. de Smit, Reken mee met ABC, Nieuw Archief voor de Wiskunde 5/8, no. 1, March 2007.

    Google Scholar 

  7. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, Oxford, 1960.

    Google Scholar 

  8. S. Lang, Questions about the error term of Diophantine inequalities, preprint, 2005.

    Google Scholar 

  9. S. Lang and W. Cherry, Topics in Nevanlinna Theory, Lect. Notes in Math. 1433, Springer-Verlag, New York, 1990.

    Google Scholar 

  10. H. W. Lenstra, W. J. Palenstijn and B. de Smit, Reken Mee met ABC, http://www.rekenmeemetabc.nl/, 2009, and http://abcathome.com/.

  11. R. C. Mason, Diophantine Equations over Functions Fields, London Math. Soc. LNS 96, Cambridge, 1984.

    Google Scholar 

  12. D. Masser, On abc and discriminants, Proc. Amer. Math. Soc. 130 (2002), 3141–3150.

    Google Scholar 

  13. A. Nitaj, http://www.math.unicaen.fr/\~nitaj/abc.html, 2009.

  14. J. Oesterlé, Nouvelles approches du “Théorème” de Fermat, Sém. Bourbaki 1987–1988 no. 694, Astérisque 161–162 (1988), 165–186.

    Google Scholar 

  15. J. H. Silverman, The S-unit equation over function fields, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 3–4.

    Google Scholar 

  16. A. L. Smirnov, Hurwitz inequalities for number fields, St. Petersburg Math. J. 4 (1993), 357–375.

    Google Scholar 

  17. C. L. Stewart, G. Tenenbaum, A refinement of the ABC Conjecture, preprint.

    Google Scholar 

  18. C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser conjecture, Mh. Math. 102 (1986), 251–257.

    Google Scholar 

  19. C. L. Stewart and K. Yu, On the abc conjecture, II, Duke Math. J. 108 (2001), 169–181.

    Google Scholar 

  20. W. W. Stothers, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford (2) 32 (1981), 349–370.

    Google Scholar 

  21. M. van Frankenhuijsen, Hyperbolic Spaces and the ABC Conjecture, thesis, Katholieke Universiteit Nijmegen, 1995.

    Google Scholar 

  22. M. van Frankenhuijsen, A lower bound in the ABC Conjecture, J. of Number Theory 82 (2000), 91–95.

    Google Scholar 

  23. M. van Frankenhuijsen, The ABC conjecture implies Vojta’s Height Inequality for Curves, J. Number Theory 95 (2002), 289–302.

    Google Scholar 

  24. M. van Frankenhuijsen, ABC implies the radicalized Vojta height inequality for curves, J. Number Theory 127 (2007), 292–300.

    Google Scholar 

Download references

Acknowledgements

We thank the referee for suggesting a number of important improvements to this paper. David Masser and Joseph Oesterlé kindly shared their recollection of the origins of the ABC Conjecture, and Hendrik Lenstra improved the paper by asking some insightful questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machiel van Frankenhuijsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van Frankenhuijsen, M. (2012). About the ABC Conjecture and an alternative. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_9

Download citation

Publish with us

Policies and ethics