Skip to main content

Ranks of elliptic curves in cubic extensions

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

Let Ebe an elliptic curve defined over the rational field . We examine the rank of the Mordell–Weil group E(K) as Kranges over cubic extensions of.

Mathematics Subject Classification (2010): 11G05, 11R16, 14H52

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bertolin, Périods de 1-motifs et transcendance, J. Number Theory no. 2, 97(2002), 204–221.

    Google Scholar 

  2. J. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, England, 1992.

    Google Scholar 

  3. H. Darmon, Rational Points on Modular Elliptic Curves, AMS (CBMS Regional Conference Series in Mathematics, Number 101), Providence R.I, 2004.

    Google Scholar 

  4. T. Dokchitser, Ranks of elliptic curves in cubic extensions, Acta Arithmetica (2007), 357–360.

    Google Scholar 

  5. T. Dokchitser, Computing special values of motivic L-functions, Exper. Math, 13(2004), 137–150.

    Google Scholar 

  6. V. Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), 91(2005), 300–324.

    Google Scholar 

  7. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarenden Press, Oxford, 3rd ed., 1954.

    Google Scholar 

  8. J. Fearnley, H. Kisilevsky, and M. Kuwata, Vanishing and non-vanishing Dirichlet twists of L-functions of elliptic curves, submitted, http://arxiv.org/abs/0711.1771.

  9. H. Kisilevsky and J. Sonn, Abelian extensions of global fields with constant local degrees, Math. Research Letters (4) 13(2006), 599–605.

    Google Scholar 

  10. A. Knapp, Elliptic Curves, Mathematical Notes 40, Princeton University Press, 1992.

    Google Scholar 

  11. B. Mazur, Modular Curves and the Eisenstein Ideal, Publ. math de l’IHES, 47(1976), 33–186.

    Google Scholar 

  12. J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. math. de l’IHES 54(1981), 323–401.

    Google Scholar 

  13. M. Waldschmidt, Densité de points rationnels sur un groupe algébrique, Experiment. Math., 3no. 4 (1994), 329–352, Errata. ibid., 4(1995), no. 3, 255.

    Google Scholar 

  14. M. Waldschmidt, Topologie des points rationnels, Cours de Troisime Cycle 1994/95, Preprint, Univ. P. et M. Curie, 1994/95.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hershy Kisilevsky .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of S. Lang

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kisilevsky, H. (2012). Ranks of elliptic curves in cubic extensions. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_17

Download citation

Publish with us

Policies and ethics