Skip to main content

Ultraspectral Sounder Data Compression by the Prediction-Based Lower Triangular Transform

  • Chapter
  • First Online:
Book cover Satellite Data Compression

Abstract

The Karhunen–Loeve transform (KLT) is the optimal unitary transform that yields the maximum coding gain. The prediction-based lower triangular transform (PLT) features the same decorrelation and coding gain properties as KLT but with lower complexity. Unlike KLT, PLT has the perfect reconstruction property which allows its direct use for lossless compression. In this paper, we apply PLT to carry out lossless compression of the ultraspectral sounder data. The experiment on the standard ultraspectral test dataset of ten AIRS digital count granules shows that the PLT compression scheme compares favorably with JPEG-LS, JPEG2000, LUT, SPIHT, and CCSDS IDC 5/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. H. Aumann and L. Strow, “AIRS, the first hyper-spectral infrared sounder for operational weather forecasting,” Proc. of IEEE Aerosp. Conf., 4, pp. 1683–1692, 2001.

    Google Scholar 

  2. H. J. Bloom, “The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing,” Proc. of the 2001 Int. Geosci. and Remote Sens. Symp., pp. 1341–1343, 2001.

    Google Scholar 

  3. T. Phulpin, F. Cayla, G. Chalon, D. Diebel, and D. Schlussel, “IASI onboard Metop: Project status and scientific preparation,” 12th Int. TOVS Study Conf., Lorne, Victoria, Australia, pp. 234–243, 2002.

    Google Scholar 

  4. W. L. Smith, F. W. Harrison, D. E. Hinton, H. E. Revercomb, G. E. Bingham, R. Petersen, and J. C. Dodge, “GIFTS – the precursor geostationary satellite component of the future Earth Observing System,” Proc. of the 2002 Int. Geosci. and Remote Sens. Symp., 1, pp. 357–361, 2002.

    Google Scholar 

  5. B. Huang, W. L. Smith, H.-L. Huang, and H. M. Woolf, “Comparison of linear forms of the radiative transfer equation with analytic Jacobians”, Appl. Optics, vol. 41, no. 21, pp. 4209–4219, 2002.

    Article  Google Scholar 

  6. B. Huang, A. Ahuja, and H.-L. Huang, “Lossless compression of ultraspectral sounder data,” Hyperspectral Data Compression, G. Motta and J. Storer; Eds., Springer-Verlag, pp. 75–106, 2005.

    Google Scholar 

  7. P. Toivanen, O. Kubasova, and J. Mielikainen, “Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data”, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp.50–54, 2005.

    Article  Google Scholar 

  8. B. Huang, A. Ahuja, H.-L. Huang, T. J. Schmit, and R. W. Heymann, “Lossless compression of 3D hyperspectral sounding data using context-based adaptive lossless image codec with bias-adjusted reordering,” Optical Engineering, vol. 43, no. 9, pp. 2071–2079, 2004.

    Article  Google Scholar 

  9. S.-M. Phoong and Y.-P. Lin, “Prediction-based lower triangular transform,” IEEE Trans. Signal Processing, vol. 48, no. 7, pp. 1947–1955, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  10. C.-C. Weng, C.-Y. Chen and P. P. Vaidyanathan, “Generalized triangular decomposition in transform coding,” IEEE Trans. Signal Processing, vol. 58, no. 2, pp. 566–574, 2010.

    Article  MathSciNet  Google Scholar 

  11. B. Huang, and Y. Sriraja, “Lossless compression of hyperspectral imagery via lookup tables with predictor selection,” Proc. SPIE, vol. 6365, pp.63650L.1, 2006.

    Google Scholar 

  12. ISO/IEC 14495–1 and ITU Recommendation T.87, “Information Technology – lossless and near-lossless compression of continuous-tone still images,” 1999.

    Google Scholar 

  13. D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression fundamentals, standards, and practice, 2002.

    Google Scholar 

  14. A. Said, and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits. Sys. Video Tech., vol. 6, pp. 243–250, June 1996.

    Article  Google Scholar 

  15. CCSDS, “Consultative Committee for Space Data Systems,” http://www.ccsds.org.

  16. B. Huang, A. Ahuja, H.-L. Huang, T.J. Schmit, R.W. Heymann, “Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data”, Proc. IEEE Data Comp. Conf., pp. 408–417, March 2005.

    Google Scholar 

  17. G. H. Golub and C. F. V. Loan, Matrix computations, John Hopkins University Press, 1996.

    Google Scholar 

  18. A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer Academic Publishers, 1992.

    Google Scholar 

  19. I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compression”, Comm. ACM, vol. 30, no. 6, pp. 520–540, June 1987.

    Article  Google Scholar 

  20. M. R. Nelson, “Arithmetic coding and statistical modeling”, Dr. Dobb’s Journal, pp. 16–29, February 1991.

    Google Scholar 

  21. Y. You, Audio coding- theories and applications, Springer, 2010.

    Google Scholar 

  22. K. Sayood, Introduction to data compression, 2nd Ed., Morgan Kaufmann Publishers, 2000.

    Google Scholar 

  23. N. S. Jayant and P. Noll, Digital coding of waveforms- principles and applications to speech and video, Prentice Hall, 1984.

    Google Scholar 

  24. J. Serra-Sagrista, F. Garcia, J. Minguillon, D. Megias, B. Huang, and A. Ahuja, “Wavelet lossless compression of ultraspectral sounder data,” Proc. Int. Geosci. Rem. Sens. Symp., vol. 1, pp. 148–151, July 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chieh Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wei, SC., Huang, B. (2012). Ultraspectral Sounder Data Compression by the Prediction-Based Lower Triangular Transform. In: Huang, B. (eds) Satellite Data Compression. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1183-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1183-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1182-6

  • Online ISBN: 978-1-4614-1183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics