Skip to main content

Bridging the Gap Between In Vitro and In Vivo Evaluation of Biomaterial-Associated Infections

  • Chapter
  • First Online:
Biomaterials Associated Infection

Abstract

Biomaterial-associated infections constitute a major clinical problem that is difficult to treat and often necessitates implant replacement. Pathogens can be introduced on an implant surface during surgery or postoperative and compete with host cells attempting to integrate the implant. The fate of a biomaterial implant has been depicted as a race between bacterial adhesion and biofilm growth on an implant surface versus tissue integration. Until today, in vitro studies on infection risks of biomaterials or functional coatings for orthopedic and dental implants were performed either for their ability to resist bacterial adhesion or for their ability to support mammalian cell adhesion and proliferation. Even though the concept of the race for the surface in biomaterial-associated infections has been intensively studied before in vivo, until recently no in vitro methodology existed for this purpose. Just very recently various groups have proposed coculture experiments to evaluate the simultaneous response of bacteria and mammalian cells on a surface. As an initial step towards bridging the gap between in vitro and in vivo evaluations of biomaterials, we here describe bi- and tri-culture experiments that allow better evaluation of multifunctional coatings in vitro and therewith bridge the gap between in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert CK, Williams RE, Levy RS, Barrack RL. Cost of treating an infected total knee replacement. Clin Orthop Relat Res. 1996;331:140–5.

    Article  Google Scholar 

  2. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.

    Article  CAS  Google Scholar 

  3. Trampuz A, Zimmerli W. New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig Drugs. 2005;6:185–90.

    CAS  Google Scholar 

  4. Calhoun JH, Klemm K, Anger DM, Mader JT. Use of antibiotic-PMMA beads in the ischemic foot. Orthopedics. 1994;17:453–7.

    CAS  Google Scholar 

  5. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  Google Scholar 

  6. Mohr VD, Eickhoff U, Haaker R, Klammer HL. External fixation of open femoral shaft fractures. J Trauma. 1995;38:648–52.

    Article  CAS  Google Scholar 

  7. Costerton JW. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  Google Scholar 

  8. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  Google Scholar 

  9. Gristina AG, Naylor PT, Myrvik QN. Musculoskeletal infection, microbial adhesion, and antibiotic resistance. Infect Dis Clin North Am. 1990;4:391–408.

    CAS  Google Scholar 

  10. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.

    Article  CAS  Google Scholar 

  11. Ahlberg A, Carlsson AS, Lindberg L. Hematogenous infection in total joint replacement. Clin Orthop Relat Res. 1978;137:69–75.

    Google Scholar 

  12. Lidwell OM, Lowbury EJ, Whyte W, Blowers R, Stanley SJ, Lowe D. Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. J Hosp Infect. 1983;4:111–31.

    Article  CAS  Google Scholar 

  13. Fitzgerald RH. Microbiologic environment of the conventional operating-room. Arch Surg. 1979;114:772–5.

    Article  Google Scholar 

  14. Verkkala K, Eklund A, Ojajarvi J, Tiittanen L, Hoborn J, Makela P. The conventionally ventilated operating theatre and air contamination control during cardiac surgery—bacteriological and particulate matter control garment options for low level contamination. Eur J Cardiothorac Surg. 1998;14:206–10.

    Article  CAS  Google Scholar 

  15. Wells CL, Maddaus MA, Simmons RL. Role of the macrophage in the translocation of intestinal bacteria. Arch Surg. 1987;122:48–53.

    Article  CAS  Google Scholar 

  16. Guo W, Andersson R, Ljungh A, Wang XD, Bengmark S. Enteric bacterial translocation after intraperitoneal implantation of rubber drain pieces. Scand J Gastroenterol. 1993;28:393–400.

    Article  CAS  Google Scholar 

  17. Okell CC, Elliott CD. Bacteriaemia and oral sepsis with special reference to the etiology of subacute endocarditis. Lancet. 1935;2:869–75.

    Article  Google Scholar 

  18. Ohara-Nemoto Y, Haraga H, Kimura S, Nemoto TK. Occurrence of staphylococci in the oral cavities of healthy adults and nasal-oral trafficking of the bacteria. J Med Microbiol. 2008;57:95–9.

    Article  CAS  Google Scholar 

  19. Gristina AG. Implant failure and the immune-incompetent fibro-inflammatory zone. Clin Orthop Relat Res. 1994;298:106–18.

    Google Scholar 

  20. Khalil H, Williams RJ, Stenbeck G, Henderson B, Meghji S, Nair SP. Invasion of bone cells by Staphylococcus epidermidis. Microbes Infect. 2007;9:460–5.

    Article  CAS  Google Scholar 

  21. Van Delden C, Iglewski BH. Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998;4:551–60.

    Article  Google Scholar 

  22. Robinson DA, Enright MC. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2004;10:92–7.

    Article  CAS  Google Scholar 

  23. Zimmerli W, Trampuz A, Ochsner PE. Current concepts: prosthetic-joint infections. N Engl J Med. 2004;351:1645–54.

    Article  CAS  Google Scholar 

  24. Massey RC, Horsburgh MJ, Lina G, Hook M, Recker M. Opinion - the evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol. 2006;4:953–8.

    Article  CAS  Google Scholar 

  25. Mckevitt AI, Bjornson GL, Mauracher CA, Scheifele DW. Amino-acid-sequence of a deltalike toxin from Staphylococcus epidermidis. Infect Immun. 1990;58:1473–5.

    CAS  Google Scholar 

  26. Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis. 1998;26:1182–7.

    Article  CAS  Google Scholar 

  27. Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect. 2002;4:481–9.

    Article  Google Scholar 

  28. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.

    Article  CAS  Google Scholar 

  29. Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000;6:85–103.

    Article  CAS  Google Scholar 

  30. Schuler M, Owen GR, Hamilton DW, De Wilde M, Textor M, Brunette DM, Tosatti SGP. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. Biomaterials. 2006;27:4003–15.

    Article  CAS  Google Scholar 

  31. VandeVondele S, Voros J, Hubbell JA. RGD-Grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng. 2003;82:784–90.

    Article  CAS  Google Scholar 

  32. Shi ZL, Neoh KG, Kang ET, Poh C, Wang W. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res A. 2008;86A:865–72.

    Article  CAS  Google Scholar 

  33. Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng Part A. 2009;15:417–26.

    Article  CAS  Google Scholar 

  34. Dexter SJ, Pearson RG, Davies MC, Camara M, Shakesheff KM. A comparison of the adhesion of mammalian cells and Staphylococcus epidermidis on fibronectin-modified polymer surfaces. J Biomed Mater Res. 2001;56:222–7.

    Article  CAS  Google Scholar 

  35. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135–48.

    Article  CAS  Google Scholar 

  36. Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res A. 2008;84A:425–35.

    Article  CAS  Google Scholar 

  37. Ploux L, Anselme K, Dirani A, Ponche A, Soppera O, Roucoules V. Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation. Langmuir. 2009;25:8161–9.

    Article  CAS  Google Scholar 

  38. Subbiahdoss G, Kuijer R, Grijpma DW, Van der Mei HC, Busscher HJ. Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater. 2009;5:1399–404.

    Article  CAS  Google Scholar 

  39. Subbiahdoss G, Grijpma DW, Van der Mei HC, Busscher HJ, Kuijer R. Microbial biofilm growth vs. tissue integration on biomaterials with different wettabilities and a polymer-brush coating. J Biomed Mater Res A. 2010;94A:533–8.

    CAS  Google Scholar 

  40. Subbiahdoss G, Saldarriaga Fernández IC, Da Silva Domingues JF, Kuijer R, Van der Mei HC, Busscher HJ. In vitro interactions between bacteria, osteoblast-like cells and macrophages in the pathogenesis of biomaterial-associated infections. PLoS ONE. 2011;6:e0024827.

    Article  Google Scholar 

  41. Buchholz HW, Elson RA, Engelbrecht E, Lodenkamper H, Rottger J, Siegel A. Management of deep infection of total hip replacement. J Bone Joint Surg Br. 1981;63B:342–53.

    Google Scholar 

  42. Bennion RS, Williams RA, Wilson SE. Comparison of infectibility of vascular prosthetic materials by quantitation of median infective dose. Surgery. 1984;95:22–6.

    CAS  Google Scholar 

  43. Fleer A, Verhoef J. New aspects of staphylococcal infections: emergence of coagulase-negative staphylococci as pathogens. Antonie Van Leeuwenhoek. 1984;50:729–44.

    Article  CAS  Google Scholar 

  44. Subbiahdoss G, Kuijer R, Busscher HJ, Van der Mei HC. Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology. 2010;156:3073–8.

    Article  CAS  Google Scholar 

  45. Anderson JM. Inflammation, wound healing, and the foreign-body response. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an Introduction to materials in medicine. San Diego, CA: Elsevier; 2004. p. 296–304.

    Google Scholar 

  46. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  CAS  Google Scholar 

  47. Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825–52.

    Article  CAS  Google Scholar 

  48. Stuart LM, Ezekowitz RAB. Phagocytosis: elegant complexity. Immunity. 2005;22:539–50.

    Article  CAS  Google Scholar 

  49. Boelens JJ, Dankert J, Murk JL, Weening JJ, Van der Poll T, Dingemans KP, Koole L, Laman JD, Zaat SAJ. Biomaterial-associated persistence of Staphylococcus epidermidis in pericatheter macrophages. J Infect Dis. 2000;181:1337–49.

    Article  CAS  Google Scholar 

  50. Babior BM. Oxidants from phagocytes: agents of defense and destruction. Blood. 1984;64: 959–66.

    CAS  Google Scholar 

  51. Guenther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Haensch GM. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol. 2009;46:1805–13.

    Article  CAS  Google Scholar 

  52. Kaplan SS, Heine RP, Simmons RL. Defensins impair phagocytic killing by neutrophils in biomaterial-related infection. Infect Immun. 1999;67:1640–5.

    CAS  Google Scholar 

  53. Saldarriaga Fernández IC, Da Silva Domingues JF, Van Kooten TG, Metzger S, Grainger DW, Busscher HJ, Van der Mei HC. Macrophage response to staphylococcal biofilm on cross-linked poly(ethylene) glycol polymer coatings in vitro. Eur Cell Mater. 2011;21:73–9.

    Google Scholar 

  54. Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, Gajkowska B, Golda A, Maciag-Gudowska A, Brix K, Shaw L, Foster T, Potempa J. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS ONE. 2008;3(1):e1409.

    Article  Google Scholar 

  55. Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65.

    Article  CAS  Google Scholar 

  56. Bonventre PF, Imhoff JG. Uptake of 3H-dihydrostreptomycin by macrophages in culture. Infect Immun. 1970;2:89–95.

    CAS  Google Scholar 

  57. Tofte RW, Petersoson PK, Kim Y, Quie PG. Influence of serum concentration on opsonization by the classical and alternative complement pathways. Infect Immun. 1980;27:693–6.

    CAS  Google Scholar 

  58. Watanabe I, Ichiki M, Shiratsuchi A, Nakanishi Y. TLR2-mediated survival of Staphylococcus aureus in macrophages: a novel bacterial strategy against host innate immunity. J Immunol. 2007;178:4917–25.

    CAS  Google Scholar 

  59. Leid JG, Shirtliff HG, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and to respond to Staphylococcus aureus biofilms. Infect Immun. 2002;70:6339–45.

    Article  CAS  Google Scholar 

  60. Johnson GM, Lee DA, Regelmann WE. Interference with granulocyte function by Staphylococcus epidermidis slime. Infect Immun. 1986;54:13–20.

    CAS  Google Scholar 

  61. Myrvit QN, Wagner W, Barth E, Wood P, Gristina AG. Effects of extracellular slime produced by Staphylococcus epidermidis on oxidative responses of rabbit alveolar macrophages. J Invest Surg. 1989;2:381–9.

    Article  Google Scholar 

  62. Shanbhag A, Yang J, Lilien J, Black J. Decreased neutrophil respiratory burst on exposure to cobaltchrome alloy and polystyrene in vitro. J Biomed Mater Res. 1992;26:185–95.

    Article  CAS  Google Scholar 

  63. Zimmerli W, Waldvogel F. Pathogenesis of foreign body infection. J Clin Invest. 1984;73: 1191–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Busscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Subbiahdoss, G., da Silva Domingues, J.F., Kuijer, R., van der Mei, H.C., Busscher, H.J. (2013). Bridging the Gap Between In Vitro and In Vivo Evaluation of Biomaterial-Associated Infections. In: Moriarty, T., Zaat, S., Busscher, H. (eds) Biomaterials Associated Infection. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1031-7_5

Download citation

Publish with us

Policies and ethics