Skip to main content

Condensed Genome Structure

  • Chapter
  • First Online:
Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Large, tailed dsDNA-containing bacteriophage genomes are packaged to a conserved and high density (∼500 mg/ml), generally in ∼2.5-nm, duplex-to-duplex, spaced, organized DNA shells within icosahedral capsids. Phages with these condensate properties, however, differ markedly in their inner capsid structures: (1) those with a naked condensed DNA, (2) those with many dispersed unstructured proteins embedded within the DNA, (3) those with a small number of localized proteins, and (4) those with a reduced or DNA-free internal protein structure of substantial volume. The DNA is translocated and condensed by a high-force ATPase motor into a procapsid already containing the proteins that are to be ejected together with the DNA into the infected host. The condensed genome structure of a single-phage type is unlikely to be precisely determined and can change without loss of function to fit an altered capsid size or internal structure. Although no such single-phage condensed genome structure is known exactly, it is known that a single general structure is unlikely to apply to all such phages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann H-W, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newslett 38:35–40

    Google Scholar 

  • Aebi U, Bijlenga RKL, Bt H et al (1976) Comparison of the structural and chemical composition of giant T-even phage heads. J Supramol Struct 5:475–495

    Article  PubMed  CAS  Google Scholar 

  • Agirrezabala X, Martin-Benito J, Caston JR et al (2005) Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–3829

    Article  PubMed  CAS  Google Scholar 

  • Arsuaga J, Vázquez M, Trigueros S et al (2002) Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc Natl Acad Sci USA 99:5373–5377

    Article  PubMed  CAS  Google Scholar 

  • Bair CL, Rifat D, Black LW (2007) Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol 366:779–789

    Article  PubMed  CAS  Google Scholar 

  • Bijlenga RKL, Aebi U, Kellenberger E (1976) Properties and structure of a gene 24-controlled T4 giant phage. J Mol Biol 103:469–498

    Article  PubMed  CAS  Google Scholar 

  • Black LW (1989) DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 43:267–292

    Article  PubMed  CAS  Google Scholar 

  • Black LW, Silverman DJ (1978) Model for DNA packaging into bacteriophage T4 heads. J Virol 28:643–655

    PubMed  CAS  Google Scholar 

  • Black LW, Newcomb WW, Boring JW et al (1985) Ion etching bacteriophage T4: support for a spiral-fold model of packaged DNA. Proc Natl Acad Sci USA 82:7960–7964

    Article  PubMed  CAS  Google Scholar 

  • Black LW, Showe MK, Steven AC (1993) Morphogenesis of the T4 head. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM, Washington, DC, pp 218–258

    Google Scholar 

  • Cardarelli L, Lam R, Tuite A et al (2010) The crystal structure of bacteriophage HK97 gp6: defining a large family of head-tail connector proteins. J Mol Biol 395:754–768

    Article  PubMed  CAS  Google Scholar 

  • Cermakian N, Ikeda TM, Cedergren R et al (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 24:648–654

    Article  PubMed  CAS  Google Scholar 

  • Cerritelli ME, Cheng N, Rosenberg AH et al (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91:271–280

    Article  PubMed  CAS  Google Scholar 

  • Cerritelli ME, Conway JF, Cheng N et al (2003a) Molecular mechanisms in bacteriophage T7 procapsid assembly, maturation, and DNA containment. Adv Protein Chem 64:301–323

    Article  PubMed  CAS  Google Scholar 

  • Cerritelli ME, Trus BL, Smith CS et al (2003b) A Second Symmetry Mismatch at the Portal Vertex of Bacteriophage T7: 8-fold Symmetry in the Procapsid Core. J Mol Biol 327:1–6

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Weigele P, King J et al (2006) Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 14:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Chang C-Y, Kemp P, Molineux IJ (2010a) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186

    Article  PubMed  CAS  Google Scholar 

  • Chang JT, Schmid MF, Haase-Pettingell C et al (2010b) Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Mol Biol 402:731–740

    Article  PubMed  CAS  Google Scholar 

  • Chattoraj DK, Inman RB (1974) Location of DNA ends in P2, 186, P4 and lambda bacteriophage heads. J Mol Biol 87:11–22

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Lu Z, Sakon J et al (2000) Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. J Mol Biol 303:125–130

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, McPartland J, Kaganman I et al (2008) Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4. J Mol Biol 378:726–736

    Article  PubMed  CAS  Google Scholar 

  • Comolli LR, Spakowitz AJ, Siegerist CE et al (2008) Three-dimensional architecture of the bacteriophage phi29 packaged genome and elucidation of its packaging process. Virology 371:267–277

    Article  PubMed  CAS  Google Scholar 

  • Depping R, Lohaus C, Meyer HE et al (2005) The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun 335:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Duda RL, Ross PD, Cheng N et al (2009) Structure and energetics of encapsidated DNA in bacteriophage HK97 studied by scanning calorimetry and cryo-electron microscopy. J Mol Biol 391:471–483

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Casjens SR (1980) DNA packaging by the double-stranded DNA bacteriophages. Cell 21:319–331

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Harrison SC (1977) DNA arrangement in isometric phage heads. Nature 268:598–602

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, King J, Harrison SC et al (1978) The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14:559–568

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa T, Yamamura A, Kameda Y et al (2010) The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:485–489

    Article  PubMed  Google Scholar 

  • Effantin G, Boulanger P, Neumann E et al (2006) Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol 361:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Fang P-A, Wright ET, Weintraub ST et al (2008) Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo. J Mol Biol 384:1384–1399

    Article  PubMed  CAS  Google Scholar 

  • Fuller DN, Rickgauer JP, Jardine PJ et al (2007) Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29. Proc Natl Acad Sci USA 104:11245–11250

    Article  PubMed  CAS  Google Scholar 

  • Garcia L, Molineux I (1996) Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli. J Bacteriol 178:6921–6929

    PubMed  CAS  Google Scholar 

  • Gleghorn ML, Davydova EK, Rothman-Denes LB et al (2008) Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol Cell 32:707–717

    Article  PubMed  CAS  Google Scholar 

  • Glucksmann MA, Markiewicz P, Malone C et al (1992) Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition. Cell 70:491–500

    Article  PubMed  CAS  Google Scholar 

  • Gowen B, Bamford JKH, Bamford DH et al (2003) The tailless icosahedral membrane virus PRD1 localizes the proteins involved in genome packaging and injection at a unique vertex. J Virol 77:7863–7871

    Article  PubMed  CAS  Google Scholar 

  • Hartman PS, Eisenstark A, Pauw PG (1979) Inactivation of phage T7 by near-ultraviolet radiation plus hydrogen peroxide: DNA-protein crosslinks prevent DNA injection. Proc Natl Acad Sci USA 76:3228–3232

    Article  PubMed  CAS  Google Scholar 

  • Hertveldt K, Lavigne R, Pleteneva E et al (2005) Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol 354:536–545

    Article  PubMed  CAS  Google Scholar 

  • Hong Y-R, Black LW (1993) Protein folding studies in vivo with a bacteriophage T4 expression-packaging-processing vector that delivers encapsidated fusion proteins into bacteria. Virology 194:481–490

    Article  PubMed  CAS  Google Scholar 

  • Iida S, Streiff MB, Bickle TA et al (1987) Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA- phages. Virology 157:156–166

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Chang J, Jakana J et al (2006) Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439:612–616

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Chiu W (2007) DNA packaging and delivery machines in tailed bacteriophages. Curr Opin Struct Biol 17:237–243

    Article  PubMed  CAS  Google Scholar 

  • Juers DH, Jacobson RH, Wigley D et al (2000) High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein Sci 9:1685–1699

    Article  PubMed  CAS  Google Scholar 

  • Kalasauskaite EV, Kadisaite DL, Daugelavicius RJ et al (1983) Studies on energy supply for genetic processes. Eur J Biochem 130:123–130

    Article  PubMed  CAS  Google Scholar 

  • Karhu NJ, Ziedaite G, Bamford DH et al (2007) Efficient DNA packaging of bacteriophage PRD1 requires the unique vertex protein P6. J Virol 81:2970–2979

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak KM, Davydova EK, Mustaev AA et al (2002) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21:5815–5823

    Article  PubMed  CAS  Google Scholar 

  • Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307–317

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29

    Article  PubMed  Google Scholar 

  • Kropinski AM, Kovalyova IV, Billington SJ et al (2007) The genome of Epsilon15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 369:234–244

    Article  PubMed  CAS  Google Scholar 

  • Krylov VN, Smirnova TA, Minenkova IB et al (1984) Pseudomonas bacteriophage phiKZ contains an inner body in its capsid. Can J Microbiol 30:758–762

    Article  PubMed  CAS  Google Scholar 

  • Lander GC, Tang L, Casjens SR et al (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–1795

    Article  PubMed  CAS  Google Scholar 

  • Lavigne R, Seto D, Mahadevan P et al (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    Article  PubMed  CAS  Google Scholar 

  • Lecoutere E, Ceyssens P-J, Miroshnikov K et al (2009) Identification and comparative analysis of the structural proteomes of phiKZ and EL, two giant Pseudomonas aeruginosa bacteriophages. Proteomics 9:3215–3219

    Article  PubMed  CAS  Google Scholar 

  • Leforestier A, Livolant F (2010) The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection. J Mol Biol 396:384–395

    Article  PubMed  CAS  Google Scholar 

  • Lepault J, Dubochet J, Baschong W et al (1987) Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J 6:1507–1512

    PubMed  CAS  Google Scholar 

  • Lhuillier S, Gallopin M, Gilquin B et al (2009) Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci USA 106:8507–8512

    Article  PubMed  CAS  Google Scholar 

  • Lipinska B, Rao AS, Bolten BM et al (1989) Cloning and identification of bacteriophage T4 gene 2 product gp2 and action of gp2 on infecting DNA in vivo. J Bacteriol 171:488–497

    PubMed  CAS  Google Scholar 

  • Liu X, Zhang Q, Murata K et al (2010) Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17:830–836

    Article  PubMed  CAS  Google Scholar 

  • Marenduzzo D, Orlandini E, Stasiak A et al (2009) DNA-DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc Natl Acad Sci USA 106:22269–22274

    Article  PubMed  CAS  Google Scholar 

  • Matsko N, Klinov D, Manykin A et al (2001) Atomic force microscopy analysis of bacteriophages PhiKZ and T4. J Electron Microsc (Tokyo) 50:417–422

    Article  CAS  Google Scholar 

  • McAllister WT, Wu HL (1978) Regulation of transcription of the late genes of bacteriophage T7. Proc Natl Acad Sci USA 75:804–808

    Article  PubMed  CAS  Google Scholar 

  • Mendelson EC, Newcomb WW, Brown JC (1992) Ar+ plasma-induced damage to DNA in bacteriophage lambda: implications for the arrangement of DNA in the phage head. J Virol 66:2226–2231

    PubMed  CAS  Google Scholar 

  • Moak M, Molineux IJ (2000) Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37:345–355

    Article  PubMed  CAS  Google Scholar 

  • Moak M, Molineux I (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183

    Article  PubMed  CAS  Google Scholar 

  • Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mullaney JM, Black LW (1996) Capsid targeting sequence targets foreign proteins into bacteriophage T4 and permits proteolytic processing. J Mol Biol 261:372–385

    Article  PubMed  CAS  Google Scholar 

  • Mullaney JM, Black LW (1998) Activity of foreign proteins targeted within the bacteriophage T4 head and prohead: implications for packaged DNA structure. J Mol Biol 283:913–929

    Article  PubMed  CAS  Google Scholar 

  • Mullaney JM, Thompson RB, Gryczynski Z et al (2000) Green fluorescent protein as a probe of rotational mobility within bacteriophage T4. J Virol Methods 88:35–40

    Article  PubMed  CAS  Google Scholar 

  • Overman SA, Aubrey KL, Reilly KE et al (1998) Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7. Biospectroscopy 4(5 Suppl):S47–S56

    Article  PubMed  CAS  Google Scholar 

  • Peñalva MA, Salas M (1982) Initiation of phage phi 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5′-dAMP. Proc Natl Acad Sci USA 79:5522–5526

    Article  PubMed  Google Scholar 

  • Petrov AS, Boz MB, Harvey SC (2007) The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape. J Struct Biol 160:241–248

    Article  PubMed  CAS  Google Scholar 

  • Rao V, Black L (2010) Structure and assembly of bacteriophage T4 head. Virol J 7:356

    Article  PubMed  CAS  Google Scholar 

  • Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  PubMed  CAS  Google Scholar 

  • Ray K, Ma JX, Oram M et al (2010) Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization of packaged phage T4 DNA ends within the capsid. J Mol Biol 395:1102–1113

    Article  PubMed  CAS  Google Scholar 

  • Repoila F, Tetart F, Bouet J-Y et al (1994) Genomic polymorphism in the T-even phages. EMBO J 13:4181–4192

    PubMed  CAS  Google Scholar 

  • Rickgauer JP, Fuller DN, Grimes S et al (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys J 94:159–167

    Article  PubMed  CAS  Google Scholar 

  • Rifat D, Wright NT, Varney KM et al (2008) Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 375:720–734

    Article  PubMed  CAS  Google Scholar 

  • Saigo K (1975) Tail-DNA connection and chromosome structure in bacteriophage T5. Virology 68:154–165

    Article  PubMed  CAS  Google Scholar 

  • Saigo K, Uchida H (1974) Connection of the right-hand terminus of DNA to the proximal end of the tail in bacteriophage lambda. Virology 61:524–536

    Article  PubMed  CAS  Google Scholar 

  • Salmon B, Baines JD (1998) Herpes simplex virus DNA cleavage and packaging: association of multiple forms of U (L) 15-encoded proteins with B capsids requires at least the U(L)6, U(L)17, and U(L)28 genes. J Virol 72:3045–3050

    PubMed  CAS  Google Scholar 

  • Scraba DG, Bradley RD, Leyritz-Wills M et al (1983) Bacteriophage phi W-14: the contribution of covalently bound putrescine to DNA packing in the phage head. Virology 124:152–160

    Article  PubMed  CAS  Google Scholar 

  • Serwer P (1986) Arrangement of double-stranded DNA packaged in bacteriophage capsids: an alternative model. J Mol Biol 190:509–512

    Article  PubMed  CAS  Google Scholar 

  • Serwer P, Wright ET, Hakala KW et al (2008) Evidence for bacteriophage T7 tail extension during DNA injection. BMC Res Notes 1:36

    Article  PubMed  Google Scholar 

  • Sheaffer AK, Newcomb WW, Gao M et al (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 75:687–698

    Article  PubMed  CAS  Google Scholar 

  • Smith DE, Tans SJ, Smith SB et al (2001) The bacteriophage Phi29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  PubMed  CAS  Google Scholar 

  • Sternberg N, Weisberg R (1975) Packaging of prophage and host DNA by coliphage lambda. Nature 256:97–103

    Article  PubMed  CAS  Google Scholar 

  • Steven AC, Heymann JB, Cheng N et al (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 15:227–236

    Article  PubMed  CAS  Google Scholar 

  • Stiege AC, Isidro A, Dröge A et al (2003) Specific targeting of a DNA-binding protein to the SPP1 procapsid by interaction with the portal oligomer. Mol Microbiol 49:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Streiff MB, Iida S, Bickle TA (1987) Expression and proteolytic processing of the darA antirestriction gene product of bacteriophage P1. Virology 157:167–171

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Serwer P (1997) The conformation of DNA packaged in bacteriophage G. Biophys J 72:958–963

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Lander Gabriel C, Olia A et al (2011) Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in P22. Structure 19(4):496–502

    Article  PubMed  CAS  Google Scholar 

  • Thomas JO (1974) Chemical linkage of the tail to the right-hand end of bacteriophage lambda DNA. J Mol Biol 87:1–9

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Rolando MR, Carroll CA et al (2008) Characterization of Pseudomonas chlororaphis myovirus 201phi2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 376:330–338

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Weintraub ST, Hakala K et al (2010) Proteome of the large Pseudomonas myovirus 201φ2-1: delineation of proteolytically processed virion proteins. Mol Cell Proteomics 9:940–951

    Article  PubMed  CAS  Google Scholar 

  • Wang GR, Vianelli A, Goldberg EB (2000) Bacteriophage T4 self-assembly: in vitro reconstitution of recombinant gp2 into infectious phage. J Bacteriol 182:672–679

    Article  PubMed  CAS  Google Scholar 

  • Watabe K, Shin M, Ito J (1983) Protein-primed initiation of phage phi 29 DNA replication. Proc Natl Acad Sci USA 80:4248–4252

    Article  PubMed  CAS  Google Scholar 

  • Witkiewicz H, Schweiger M (1985) A model of lambda DNA arrangement in the viral particle. J Theor Biol 116:587–605

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Morais MC, Battisti AJ et al (2006) Structural changes of bacteriophage phi29 upon DNA packaging and release. EMBO J 25:5229–5239

    Article  PubMed  CAS  Google Scholar 

  • Yu TY, Schaefer J (2008) REDOR NMR characterization of DNA packaging in bacteriophage T4. J Mol Biol 382:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Zachary A, Black LW (1991) Isolation and characterization of a portal protein-DNA complex from dsDNA bacteriophage. Intervirology 33:6–16

    CAS  Google Scholar 

  • Zhang Z, Greene B, Thuman-Commike PA et al (2000) Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. J Mol Biol 297:615–626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Julienne Mullaney, Ian Molineux, and Alasdair Steven for their reading of this manuscript and their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Black, L.W., Thomas, J.A. (2012). Condensed Genome Structure. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_21

Download citation

Publish with us

Policies and ethics