Skip to main content

Viral Polymerases

  • Chapter
  • First Online:
Book cover Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Viral polymerases play a central role in viral genome replication and transcription. Based on the genome type and the specific needs of particular virus, RNA-dependent RNA polymerase, RNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and DNA-dependent RNA polymerases are found in various viruses. Viral polymerases are generally active as a single protein capable of carrying out multiple functions related to viral genome synthesis. Specifically, viral polymerases use variety of mechanisms to recognize initial binding sites, ensure processive elongation, terminate replication at the end of the genome, and also coordinate the chemical steps of nucleic acid synthesis with other enzymatic activities. This review focuses on different viral genome replication and transcription strategies, and the polymerase interactions with various viral proteins that are necessary to complete genome synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    Article  PubMed  CAS  Google Scholar 

  • Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453:184–189

    Article  PubMed  CAS  Google Scholar 

  • Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937

    Article  PubMed  CAS  Google Scholar 

  • Ago H, Adachi T, Yoshida A, Yamamoto M, Habuka N, Yatsunami K, Miyano M (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 7:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241

    PubMed  CAS  Google Scholar 

  • Basu VP, Song M, Gao L, Rigby ST, Hanson MN, Bambara RA (2008) Strand transfer events during HIV-1 reverse transcription. Virus Res 134:19–38

    Article  PubMed  CAS  Google Scholar 

  • Berman AJ, Kamtekar S, Goodman JL, Lazaro JM, de Vega M, Blanco L, Salas M, Steitz TA (2007) Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO J 26:3494–3505

    Article  PubMed  CAS  Google Scholar 

  • Bishop DH, Gay ME, Matsuoko Y (1983) Nonviral heterogeneous sequences are present at the 5’ ends of one species of snowshoe hare bunyavirus S complementary RNA. Nucleic Acids Res 11:6409–6418

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Salas M (1996) Relating structure to function in phi29 DNA polymerase. J Biol Chem 271:8509–8512

    Article  PubMed  CAS  Google Scholar 

  • Boivin S, Cusack S, Ruigrok RW, Hart DJ (2010) Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 285(37):28411–28417

    Google Scholar 

  • Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale RL, Mathieu M, De Francesco R, Rey FA (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci USA 96:13034–13039

    Article  PubMed  CAS  Google Scholar 

  • Broyles SS (2003) Vaccinia virus transcription. J Gen Virol 84:2293–2303

    Article  PubMed  CAS  Google Scholar 

  • Cheetham GM, Steitz TA (1999) Structure of a transcribing T7 RNA polymerase initiation complex. Science 286:2305–2309

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL, Pevear DC, Rossmann MG (2004) The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci USA 101:4425–4430

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Gallei A, Becher P, Rossmann MG (2006) The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain. Structure 14:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Rossmann MG (2009) RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol 19(6):746–751

    Article  PubMed  CAS  Google Scholar 

  • Delarue M, Poch O, Tordo N, Moras D, Argos P (1990) An attempt to unify the structure of polymerases. Protein Eng 3:461–467

    Article  PubMed  CAS  Google Scholar 

  • DeStefano JJ, Mallaber LM, Fay PJ, Bambara RA (1994) Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases. Nucleic Acids Res 22:3793–3800

    Article  PubMed  CAS  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164

    Article  PubMed  CAS  Google Scholar 

  • Dufour E, Rodriguez I, Lazaro JM, de Vega M, Salas M (2003) A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 331:781–794

    Article  PubMed  CAS  Google Scholar 

  • Durniak KJ, Bailey S, Steitz TA (2008) The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322:553–557

    Article  PubMed  CAS  Google Scholar 

  • Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Canard B (2007) Structural and functional analysis of methylation and 5’-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372:723–736

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279:47212–47221

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Orta C, Arias A, Agudo R, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2006) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J 25:880–888

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci USA 104:9463–9468

    Article  PubMed  CAS  Google Scholar 

  • Furfine ES, Reardon JE (1991) Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J Biol Chem 266:406–412

    PubMed  CAS  Google Scholar 

  • Gao G, Orlova M, Georgiadis MM, Hendrickson WA, Goff SP (1997) Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc Natl Acad Sci USA 94:407–411

    Article  PubMed  CAS  Google Scholar 

  • Golomb M, Chamberlin M (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249(9):2858–2863

    Google Scholar 

  • Gu M, Lima CD (2005) Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15:99–106

    Article  PubMed  CAS  Google Scholar 

  • Guajardo R, Sousa R (1997) A model for the mechanism of polymerase translocation. J Mol Biol 265:8–19

    Article  PubMed  CAS  Google Scholar 

  • Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Hogg M, Wallace SS, Doublie S (2004) Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. EMBO J 23:1483–1493

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Cameron CE, Walker MP, Castro C, Yao N, Lau JY, Zhong W (2001) A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lazaro JM, Salas M, Bustamante C (2009) Proofreading dynamics of a processive DNA polymerase. EMBO J 28:2794–2802

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA 90:6320–6324

    Article  PubMed  CAS  Google Scholar 

  • Jeruzalmi D, Steitz TA (1998) Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme. EMBO J 17:4101–4113

    Article  PubMed  CAS  Google Scholar 

  • Julias JG, McWilliams MJ, Sarafianos SG, Arnold E, Hughes SH (2002) Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo. Proc Natl Acad Sci USA 99:9515–9520

    Article  PubMed  CAS  Google Scholar 

  • Kamtekar S, Berman AJ, Wang J, Lazaro JM, de Vega M, Blanco L, Salas M, Steitz TA (2006) The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition. EMBO J 25:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Kao CC, Del Vecchio AM, Zhong W (1999) De novo initiation of RNA synthesis by a recombinant flaviviridae RNA-dependent RNA polymerase. Virology 253:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu H, Nakanishi A (1998) How do animal DNA viruses get to the nucleus? Annu Rev Microbiol 52:627–686

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee J, Ryu WS (2009) Four conserved cysteine residues of the hepatitis B virus polymerase are critical for RNA pregenome encapsidation. J Virol 83:8032–8040

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt LA, Steitz TA (1992) Reverse transcriptase of human immunodeficiency virus can use either human tRNA(3Lys) or Escherichia coli tRNA(2Gln) as a primer in an in vitro primer-utilization assay. Proc Natl Acad Sci USA 89:9652–9656

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Krug MS, Berger SL (1989) Ribonuclease H activities associated with viral reverse transcriptases are endonucleases. Proc Natl Acad Sci USA 86:3539–3543

    Article  PubMed  CAS  Google Scholar 

  • Lai VC, Kao CC, Ferrari E, Park J, Uss AS, Wright-Minogue J, Hong Z, Lau JY (1999) Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol 73:10129–10136

    PubMed  CAS  Google Scholar 

  • Lazaro JM, Blanco L, Salas M (1995) Purification of bacteriophage phi 29 DNA polymerase. Methods Enzymol 262:42–49

    Article  PubMed  CAS  Google Scholar 

  • Lelke M, Brunotte L, Busch C, Gunther S (2010) An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J Virol 84:1934–1944

    Article  PubMed  CAS  Google Scholar 

  • Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943

    Article  PubMed  CAS  Google Scholar 

  • Luo G, Hamatake RK, Mathis DM, Racela J, Rigat KL, Lemm J, Colonno RJ (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 74:851–863

    Article  PubMed  CAS  Google Scholar 

  • Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689

    Article  PubMed  CAS  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99

    Article  PubMed  CAS  Google Scholar 

  • Meijer WJ, Horcajadas JA, Salas M (2001) Phi29 family of phages. Microbiol Mol Biol Rev 65:261–287, second page, table of contents

    Article  PubMed  CAS  Google Scholar 

  • Mendez J, Blanco L, Salas M (1997) Protein-primed DNA replication: a transition between two modes of priming by a unique DNA polymerase. EMBO J 16:2519–2527

    Article  PubMed  CAS  Google Scholar 

  • Mesters JR, Tan J, Hilgenfeld R (2006) Viral enzymes. Curr Opin Struct Biol 16:776–786

    Article  PubMed  CAS  Google Scholar 

  • Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne G, Gunther S, Canard B (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6:e1001038

    Article  PubMed  Google Scholar 

  • Murray KE, Barton DJ (2003) Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 77:4739–4750

    Article  PubMed  CAS  Google Scholar 

  • Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134:235–249

    Article  PubMed  CAS  Google Scholar 

  • Ng KK, Cherney MM, Vazquez AL, Machin A, Alonso JM, Parra F, James MN (2002) Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766

    Article  PubMed  CAS  Google Scholar 

  • Orlowski J, Bujnicki JM (2008) Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 36:3552–3569

    Article  PubMed  CAS  Google Scholar 

  • Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, Wimmer E (2003a) Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77:891–904

    Article  PubMed  CAS  Google Scholar 

  • Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E (2003b) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem 278:43951–43960

    Article  PubMed  CAS  Google Scholar 

  • Plotch SJ, Bouloy M, Ulmanen I, Krug RM (1981) A unique cap(m7G pppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847–858

    Article  PubMed  CAS  Google Scholar 

  • Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    PubMed  CAS  Google Scholar 

  • Polyak SJ, Zheng S, Harnish DG (1995) 5’ termini of Pichinde arenavirus S RNAs and mRNAs contain nontemplated nucleotides. J Virol 69:3211–3215

    PubMed  CAS  Google Scholar 

  • Radziwill G, Tucker W, Schaller H (1990) Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. J Virol 64:613–620

    PubMed  CAS  Google Scholar 

  • Ranjith-Kumar CT, Kim YC, Gutshall L, Silverman C, Khandekar S, Sarisky RT, Kao CC (2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals. J Virol 76:12513–12525

    Article  PubMed  CAS  Google Scholar 

  • Rausch JW, Lener D, Miller JT, Julias JG, Hughes SH, Le Grice SF (2002) Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity. Biochemistry 41:4856–4865

    Article  PubMed  CAS  Google Scholar 

  • Reguera J, Weber F, Cusack S (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6:e1001101

    Article  PubMed  Google Scholar 

  • Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC (1995) The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I, Lazaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M (2005) A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity. Proc Natl Acad Sci USA 102:6407–6412

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Wells V, Plotch SJ, DeStefano JJ (2001) Primer-dependent synthesis by poliovirus RNA-dependent RNA polymerase (3D(pol)). Nucleic Acids Res 29:2715–2724

    Article  PubMed  CAS  Google Scholar 

  • Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA polymerases. Adv Protein Chem 71:401–440

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Das K, Tantillo C, Clark AD Jr, Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20:1449–1461

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713

    Article  PubMed  CAS  Google Scholar 

  • Sohn JA, Litwin S, Seeger C (2009) Mechanism for CCC DNA synthesis in hepadnaviruses. PLoS One 4:e8093

    Article  PubMed  Google Scholar 

  • Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364:593–599

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1998) A mechanism for all polymerases. Nature 391:231–232

    Article  PubMed  CAS  Google Scholar 

  • Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 420:43–50

    Article  PubMed  CAS  Google Scholar 

  • Temiakov D, Mentesana PE, Ma K, Mustaev A, Borukhov S, McAllister WT (2000) The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc Natl Acad Sci USA 97:14109–14114

    Article  PubMed  CAS  Google Scholar 

  • Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23:3462–3471

    Article  PubMed  CAS  Google Scholar 

  • Truniger V, Lazaro JM, Salas M, Blanco L (1996) A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J 15:3430–3441

    PubMed  CAS  Google Scholar 

  • Truniger V, Blanco L, Salas M (1999) Role of the “YxGG/A” motif of Phi29 DNA polymerase in protein-primed replication. J Mol Biol 286:57–69

    Article  PubMed  CAS  Google Scholar 

  • Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398

    Article  PubMed  CAS  Google Scholar 

  • van Dijk AA, Makeyev EV, Bamford DH (2004) Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85:1077–1093

    Article  PubMed  Google Scholar 

  • Wang HY, Elston T, Mogilner A, Oster G (1998) Force generation in RNA polymerase. Biophys J 74:1186–1202

    Article  PubMed  CAS  Google Scholar 

  • Weigel C, Seitz H (2006) Bacteriophage replication modules. FEMS Microbiol Rev 30:321–381

    Article  PubMed  CAS  Google Scholar 

  • Wendeler M, Miller JT, Le Grice SFJ (2009) Human immunodeficiency virus reverse transcriptase. Cameron, Craig E.; Gotte, Matthias; Raney, Kevin D. (Eds.) In: Viral genome replication, Springer Science  +  Business Media, New York, pp 403–427

    Google Scholar 

  • Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765

    Article  PubMed  CAS  Google Scholar 

  • Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404

    Article  PubMed  CAS  Google Scholar 

  • Zamyatkin DF, Parra F, Alonso JM, Harki DA, Peterson BR, Grochulski P, Ng KK (2008) Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283:7705–7712

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. Michael Rossmann, James Groarke, Marc Morais, Lucia Rothman-Denes, Peter Mason, and many colleagues who shared their passion for viruses with me throughout the years. The work is supported by NIH grants AI057156 and AI087856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung H. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Choi, K.H. (2012). Viral Polymerases. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_12

Download citation

Publish with us

Policies and ethics