Skip to main content

Macrophages and Inflammation

  • Chapter
  • First Online:

Abstract

Adipose tissue has been under focus in the last decades, and pivotal concepts have emerged from the studies of its complex biology. White adipose tissue is composed of mature adipocytes, precursors (preadipocytes), endothelial cells, macrophages, and other immune cells. The phenotype, amount, and biology of each adipose tissue component are profoundly altered in human obesity. Low-grade inflammation both at the local and systemic levels characterizes obesity and appears to have a key role in mediating the consequence of increased adipose tissue mass on metabolic and vascular comorbidities. Among the different cell types contributing to inflammation, this chapter focuses on the mechanisms and consequences of macrophage accumulation in obese adipose tissue. While differences probably exist between rodent models and human cases, macrophage cells have a very complex phenotype able to change with weight modification. It is not fully established whether macrophages exert a rather beneficial or deleterious role in the adipose tissue. In any case, the presence of these cells modifies the biology of adipose specialized cells such as preadipocytes and adipocytes. This chapter reviews the current knowledge regarding the contribution of monocytes/macrophages in development and maintenance of obesity and related complications both in mouse and human situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahima RS, Osei SY (2008) Adipokines in obesity. Front Horm Res 36:182–197

    Article  PubMed  CAS  Google Scholar 

  • Andersson CX, Gustafson B, Hammarstedt A et al (2008) Inflamed adipose tissue, insulin resistance and vascular injury. Diabetes Metab Res Rev 24:595–603

    Article  PubMed  CAS  Google Scholar 

  • Apovian CM, Bigornia S, Mott M et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659

    Article  PubMed  CAS  Google Scholar 

  • Aron-Wisnewsky J, Tordjman J, Poitou C et al (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623

    Article  PubMed  CAS  Google Scholar 

  • Bourlier V, Zakaroff-Girard A, Miranville A et al (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD, Graves DC, Motamed K et al (2003) SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci USA 100:6045–6050

    Article  PubMed  CAS  Google Scholar 

  • Bruun JM, Lihn AS, Pedersen SB et al (2005) Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J Clin Endocrinol Metab 90:2282–2289

    Article  PubMed  CAS  Google Scholar 

  • Buchwald H, Avidor Y, Braunwald E et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–1737

    Article  PubMed  CAS  Google Scholar 

  • Cancello R, Henegar C, Viguerie N et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  PubMed  CAS  Google Scholar 

  • Capel F, Klimcakova E, Viguerie N et al (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–1567

    Article  PubMed  CAS  Google Scholar 

  • Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Mumick S, Zhang C et al (2005) Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 13:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Chun TH, Hotary KB, Sabeh F et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577–591

    Article  PubMed  CAS  Google Scholar 

  • Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355

    Article  PubMed  CAS  Google Scholar 

  • Clement K, Viguerie N, Poitou C et al (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 18:1657–1669

    Article  PubMed  CAS  Google Scholar 

  • Cottam DR, Schaefer PA, Shaftan GW et al (2002) Effect of surgically-induced weight loss on leukocyte indicators of chronic inflammation in morbid obesity. Obes Surg 12:335–342

    Article  PubMed  CAS  Google Scholar 

  • Cottam DR, Mattar SG, Barinas-Mitchell E et al (2004) The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 14:589–600

    Article  PubMed  Google Scholar 

  • Cros J, Cagnard N, Woollard K et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386

    Article  PubMed  CAS  Google Scholar 

  • Curat CA, Miranville A, Sengenes C et al (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Dahlman I, Kaaman M, Olsson T et al (2005) A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab 90:5834–5840

    Article  PubMed  CAS  Google Scholar 

  • Davis JE, Gabler NK, Walker-Daniels J et al (2008) Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 16:1248–1255

    Article  CAS  Google Scholar 

  • Di Gregorio GB, Yao-Borengasser A, Rasouli N et al (2005) Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 54:2305–2313

    Article  PubMed  Google Scholar 

  • Divoux A, Tordjman J, Lacasa D et al (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59:2817–2825

    Article  PubMed  CAS  Google Scholar 

  • Dixon JB, O’Brien PE, Playfair J et al (2008) Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299:316–323

    Article  PubMed  CAS  Google Scholar 

  • Esposito K, Pontillo A, Di Palo C et al (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289:1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Fain JN (2010) Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 2010:513948

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Eagon JC, Trujillo ME et al (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Fujisaka S, Usui I, Bukhari A et al (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58:2574–2582

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Maeda N, Sonoda M et al (2008) Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol 28:863–870

    Article  PubMed  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  PubMed  CAS  Google Scholar 

  • Ghanim H, Aljada A, Hofmeyer D et al (2004) Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 110:1564–1571

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Halberg N, Khan T, Trujillo ME et al (2009) Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29:4467–4483

    Article  PubMed  CAS  Google Scholar 

  • Harman-Boehm I, Bluher M, Redel H et al (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Henegar C, Tordjman J, Achard V et al (2008) Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 9:R14

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    Article  PubMed  CAS  Google Scholar 

  • Huber J, Kiefer FW, Zeyda M et al (2008) CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 93:3215–3221

    Article  PubMed  CAS  Google Scholar 

  • Hui JM, Hodge A, Farrell GC et al (2004) Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 40:46–54

    Article  PubMed  CAS  Google Scholar 

  • Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107:579–591

    Article  PubMed  CAS  Google Scholar 

  • Inouye KE, Shi H, Howard JK et al (2007) Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56:2242–2250

    Article  PubMed  CAS  Google Scholar 

  • Ito A, Suganami T, Yamauchi A et al (2008) Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem 283:35715–35723

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Tamura S, Kiso S et al (2003) Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125:1796–1807

    Article  PubMed  CAS  Google Scholar 

  • Kamei M, Carman CV (2010) New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol 17:43–52

    Article  PubMed  Google Scholar 

  • Kamei N, Tobe K, Suzuki R et al (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614

    Article  PubMed  CAS  Google Scholar 

  • Kanda H, Tateya S, Tamori Y et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    Article  PubMed  CAS  Google Scholar 

  • Keophiphath M, Achard V, Henegar C et al (2009) Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23:11–24

    Article  PubMed  CAS  Google Scholar 

  • Keophiphath M, Rouault C, Divoux A et al (2010) CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb Vasc Biol 30:39–45

    Article  PubMed  CAS  Google Scholar 

  • Khallou-Laschet J, Varthaman A, Fornasa G et al (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5:e8852

    Article  PubMed  CAS  Google Scholar 

  • Kirk EA, Sagawa ZK, McDonald TO et al (2008) Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57:1254–1261

    Article  PubMed  CAS  Google Scholar 

  • Kishore P, Li W, Tonelli J et al (2010) Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 24(20):20ra15

    Article  CAS  Google Scholar 

  • Kobashi C, Urakaze M, Kishida M et al (2005) Adiponectin inhibits endothelial synthesis of interleukin-8. Circ Res 97:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Koliwad SK, Streeper RS, Monetti M et al (2010) DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J Clin Invest 120:756–767

    Article  PubMed  CAS  Google Scholar 

  • Kos K, Wong S, Tan B et al (2009) Regulation of the fibrosis and angiogenesis promoter SPARC/osteonectin in human adipose tissue by weight change, leptin, insulin, and glucose. Diabetes 58:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Kosteli A, Sugaru E, Haemmerle G et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479

    Article  PubMed  CAS  Google Scholar 

  • Kovacikova M, Sengenes C, Kovacova Z et al (2011) Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes (Lond) 35:91–98

    Article  CAS  Google Scholar 

  • Lacasa D, Taleb S, Keophiphath M et al (2007) Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148:868–877

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Wu Y, Fried SK (2010) Adipose tissue remodeling in pathophysiology of obesity. Curr Opin Clin Nutr Metab Care 13:371–376

    Article  PubMed  Google Scholar 

  • Liu J, Divoux A, Sun J et al (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15:940–945

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN, Bodzin JL, Saltiel AR (2007a) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN, Deyoung SM, Bodzin JL et al (2007b) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN, DelProposto JB, Westcott DJ et al (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246

    Article  PubMed  CAS  Google Scholar 

  • Makkonen J, Westerbacka J, Kolak M et al (2007) Increased expression of the macrophage markers and of 11beta-HSD-1 in subcutaneous adipose tissue, but not in cultured monocyte-derived macrophages, is associated with liver fat in human obesity. Int J Obes (Lond) 31:1617–1625

    Article  CAS  Google Scholar 

  • Marra F, Aleffi S, Bertolani C et al (2005) Review article: the pathogenesis of fibrosis in non-alcoholic steatohepatitis. Aliment Pharmacol Ther 22(Suppl 2):44–47

    Article  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Shimomura I, Sata M et al (2002) Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 277:37487–37491

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  • Musso G, Gambino R, Biroli G et al (2005) Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic Beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis. Am J Gastroenterol 100:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Nara N, Nakayama Y, Okamoto S et al (2007) Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J Biol Chem 282:30794–30803

    Article  PubMed  CAS  Google Scholar 

  • Nijhuis J, Rensen SS, Slaats Y et al (2009) Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity (Silver Spring) 17:2014–2018

    Article  CAS  Google Scholar 

  • Nishimura S, Manabe I, Nagasaki M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K, Parker JL, Ouchi N et al (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 285:6153–6160

    Article  PubMed  CAS  Google Scholar 

  • Ohman MK, Eitzman DT (2009) Targeting MCP-1 to reduce vascular complications of obesity. Recent Pat Cardiovasc Drug Discov 4:164–176

    Article  PubMed  CAS  Google Scholar 

  • Pandzic Jaksic V, Gizdic B, Miletic Z et al (2010) Monocytes in metabolic disorders-opportunities for flow cytometry contributions. Coll Antropol 34:319–325

    PubMed  Google Scholar 

  • Pang C, Gao Z, Yin J et al (2008) Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 295:E313–E322

    Article  PubMed  CAS  Google Scholar 

  • Pasarica M, Gowronska-Kozak B, Burk D et al (2009) Adipose tissue collagen VI in obesity. J Clin Endocrinol Metab 94:5155–5162

    Article  PubMed  CAS  Google Scholar 

  • Poitou C, Divoux A, Faty A et al (2009) Role of serum amyloid a in adipocyte-macrophage cross talk and adipocyte cholesterol efflux. J Clin Endocrinol Metab 94:1810–1817

    Article  PubMed  CAS  Google Scholar 

  • Rogacev KS, Ulrich C, Blomer L et al (2010) Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J 31:369–376

    Article  PubMed  CAS  Google Scholar 

  • Roncon-Albuquerque R Jr, Moreira-Rodrigues M, Faria B et al (2008) Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci 83:502–510

    Article  PubMed  CAS  Google Scholar 

  • Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Shaul ME, Bennett G, Strissel KJ et al (2010) Dynamic, M2-like remodeling phenotypes of CD11c  +  adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes 59:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  PubMed  CAS  Google Scholar 

  • Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Larghi P, Mancino A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom L, Lindroos AK, Peltonen M et al (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351:2683–2693

    Article  PubMed  Google Scholar 

  • Skilton MR, Boussel L, Bonnet F et al (2011) Carotid intima-media and adventitial thickening: comparison of new and established ultrasound and magnetic resonance imaging techniques. Atherosclerosis 215(2):405–410

    Article  PubMed  CAS  Google Scholar 

  • Skurk T, Alberti-Huber C, Herder C et al (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin resistant subjects are associated with collagen VI, fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299:E1016–E1027

    Article  PubMed  CAS  Google Scholar 

  • Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918

    Article  PubMed  CAS  Google Scholar 

  • Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  PubMed  CAS  Google Scholar 

  • Surmi BK, Webb CD, Ristau AC et al (2010) Absence of macrophage inflammatory protein-1{alpha} does not impact macrophage accumulation in adipose tissue of diet-induced obese mice. Am J Physiol Endocrinol Metab 299:E437–E445

    Article  PubMed  CAS  Google Scholar 

  • Tam CS, Viardot A, Clement K et al (2010) Short-term overfeeding may induce peripheral insulin resistance without altering subcutaneous adipose tissue macrophages in humans. Diabetes 59:2164–2170

    Article  PubMed  CAS  Google Scholar 

  • Tartare-Deckert S, Chavey C, Monthouel MN et al (2001) The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J Biol Chem 276:22231–22237

    Article  PubMed  CAS  Google Scholar 

  • Tordjman J, Poitou C, Hugol D et al (2009) Association between omental adipose tissue macrophages and liver histopathology in morbid obesity: influence of glycemic status. J Hepatol 51:354–362

    Article  PubMed  CAS  Google Scholar 

  • Tsou CL, Peters W, Si Y et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909

    Article  PubMed  CAS  Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Utzschneider KM, Kahn SE (2006) Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91:4753–4761

    Article  PubMed  CAS  Google Scholar 

  • Van der Poorten D, Kenny DT, Butler T et al (2007) Liver disease in adolescents: a cohort study of high-risk individuals. Hepatology 46:1750–1758

    Article  PubMed  Google Scholar 

  • Villaret A, Galitzky J, Decaunes P et al (2010) Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metbolic, and inflammatory gene expression and cellular senescence. Diabetes 59:2755–2763

    PubMed  CAS  Google Scholar 

  • Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  • Weisberg SP, Hunter D, Huber R et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124

    Article  PubMed  CAS  Google Scholar 

  • Westcott DJ, Delproposto JB, Geletka LM et al (2009) MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. J Exp Med 206:3143–3156

    Article  PubMed  CAS  Google Scholar 

  • Westerbacka J, Corner A, Tiikkainen M et al (2004) Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia 47:1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Wing RR, Koeske R, Epstein LH et al (1987) Long-term effects of modest weight loss in type II diabetic patients. Arch Intern Med 147:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Ghosh S, Perrard XD et al (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  • Yang RZ, Lee MJ, Hu H et al (2006) Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 3:e287

    Article  PubMed  CAS  Google Scholar 

  • Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 33:54–66

    Article  CAS  Google Scholar 

  • Yokota T, Oritani K, Takahashi I et al (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–1732

    PubMed  CAS  Google Scholar 

  • You T, Nicklas BJ (2006) Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr Diabetes Rev 2:29–37

    Article  PubMed  Google Scholar 

  • Yu R, Kim CS, Kwon BS et al (2006) Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 14:1353–1362

    Article  CAS  Google Scholar 

  • Yudkin JS, Stehouwer CD, Emeis JJ et al (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978

    Article  PubMed  CAS  Google Scholar 

  • Zeyda M, Farmer D, Todoric J et al (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31:1420–1428

    Article  CAS  Google Scholar 

  • Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81:584–592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the European Commission which supports their research programs on inflammation and metabolic diseases (ADAPT), Hepadip consortium (http://www.hepadip.org/, contract LSHM-CT-2005-018734), and the FLIP 7th framework program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Dalmas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dalmas, E., Tordjman, J., Guerre-Millo, M., Clément, K. (2012). Macrophages and Inflammation. In: Symonds, M. (eds) Adipose Tissue Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0965-6_6

Download citation

Publish with us

Policies and ethics