Skip to main content

Superhydrophobicity

  • Chapter
  • First Online:
Biomimetics in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 152))

Abstract

In the preceding chapter, we have discussed the capillary phenomena related to wetting. Superhydrophobicity or roughness-induced nonwetting is associated with the Lotus effect and currently serves as the main approach to design self-cleaning surfaces. In order to create a robust superhydrophobic surface, two factors are required. First, the surface should be at least slightly hydrophobic initially having water contact angle >90°. Second, surface roughness should be applied. Surface roughness plays the dominant role in the superhydrophobicity (in some cases, even an initially hydrophilic surface can become superhydrophobic if proper roughness is applied). It is desirable that the surface roughness is hierarchical or multiscale with submicron scale roughness details imposed on the microscale roughness. The adhesion of water to the solid is reduced significantly if a composite interface with air pockets sitting between the solid and liquid can form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anisimov, M.A.: Divergence of Tolman’s length for a droplet near the critical point. Phys. Rev. Lett. 98, 035702 (2007)

    Article  Google Scholar 

  • Bahadur, V., Garimella, S.V.: Electrowetting-based control of static droplet states on rough surfaces. Langmuir 23, 4918–4924 (2007)

    Article  Google Scholar 

  • Barbieri, L., Wagner, E., Hoffmann, P.: Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstavles. Langmuir 23, 1723–1734 (2007)

    Article  Google Scholar 

  • Basu, B.J., Manasa, J.: Reversible switching of nanostructured cobalt hydroxide films from superhydrophobic to superhydrophilic state. Appl Phys. A 103, 343–348 (2011)

    Article  Google Scholar 

  • Bartell, F.E., Shepard, J.W.: Surface roughness as related to hysteresis of contact angles. J. Phys. Chem. 57, 455–458 (1953)

    Article  Google Scholar 

  • Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., Moulinet, S.: Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299–305 (2006)

    Article  Google Scholar 

  • Bergeron, V., Bonn, D., Martin, J.Y., Vovelle, L.: Controlling droplet deposition with polymer additives. Nature 405, 772–775 (2000)

    Article  Google Scholar 

  • Bhushan, B., Jung, Y.C.: Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007)

    Article  Google Scholar 

  • Bhushan, B., Nosonovsky, M.: The rose petal effect and the modes of superhydrophobicity. Phil Trans Royal. Soc. A. 368, 4713–4728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bormashenko, E., et al.: Micrometer-scale honeycomb polymer films and their properties. Macromol. Mater. Eng. 293, 872–877 (2008)

    Article  Google Scholar 

  • Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., Pogreb, R., Barkay, Z.: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007a)

    Article  Google Scholar 

  • Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrated drops deposited on the rough surfaces: is dynamic Cassie-Wenzel transition 2D or 1D affair? Langmuir 23, 6501–6503 (2007b)

    Article  Google Scholar 

  • Boruvka, L., Neumann, A.W.: Generalization of the classical theory of capillarity. J. Chem. Phys. 66, 5464–5476 (1977)

    Article  Google Scholar 

  • Checco, A., Guenoun, P., Daillant, J.: Nonlinear dependence of the contact angle of nanodroplets on contact line curvatures. Phys. Rev. Lett. 91, 186101 (2003)

    Article  Google Scholar 

  • Cheng, Y.T., Rodak, D.E., Angelopoulos, A., Gacek, T.: Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005)

    Article  Google Scholar 

  • Cui, H., et al.: Reversible ultraviolet light-manipulated superhydrophobic-to-superhydrophilic transition on a tubular SiC nanostructure film. Appl. Phys. Lett. 97, 183112 (2010)

    Article  Google Scholar 

  • Derjaguin, B.V., Churaev, N.V.: Structural component of disjoining pressure. J. Colloid Interface Sci. 49, 249–255 (1974)

    Article  Google Scholar 

  • Erbil, H.Y., Demirel, A.L., Avci, Y.: Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003)

    Article  Google Scholar 

  • Eustathopoulos, N., Nicholas, M.G., Drevet, B.: Wettability at High Temparatures. Pergamon, Amsterdam (1999)

    Google Scholar 

  • Extrand, C.W.: Contact angle hysteresis on surfaces with chemically heterogeneous islands. Langmuir 19, 3793–3796 (2003)

    Article  Google Scholar 

  • Feng, X.J., Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv Mater. 18, 3063–3078 (2006)

    Article  Google Scholar 

  • Feng, X.L., Feng, L., Jin, M.H., Zhai, J., Jiang, L., Zhu, D.B.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004)

    Article  Google Scholar 

  • Frenkel, Y.I.: On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface. J. Exp. Theor. Phys. (USSR) 18, 659 (1948)

    MathSciNet  Google Scholar 

  • Gao, X.F., Jiang, L.: Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)

    Article  Google Scholar 

  • Gao, L., McCarthy, T.J.: The lotus effect explained: two reasons why two length scales of topography are important. Langmuir 22, 2966–2967 (2006)

    Article  Google Scholar 

  • Gao, L., McCarthy, T.J.: How Wenzel and Cassie were wrong. Langmuir 23, 3762–3765 (2007)

    Article  Google Scholar 

  • de Gennes, P.G., Brochard-Wyart, F., Quėrė, D.: Capillarity and Wetting Phenomena. Springer, Berlin (2003)

    Google Scholar 

  • Gras, S.L., et al.: Intelligent control of surface hydrophobicity. Chem. Phys. Chem. 8, 2036–2050 (2007)

    Article  Google Scholar 

  • Greenberg, M.D.: Foundation of Applied Mathematics. Prentice-Hall, Englewood Cliffs, NJ (1978)

    Google Scholar 

  • Greenwood, J.A., Wu, J.J.: Surface roughness and contact: an apology. Meccanica 36, 617–630 (2001)

    Article  MATH  Google Scholar 

  • Gupta, P., Ulman, A., Fanfan, F., Korniakov, A., Loos, K.: Mixed self-assembled monolayer of alkanethiolates on ultrasmooth gold do not exhibit contact angle hysteresis. J. Am. Chem. Soc. 127, 4–5 (2005)

    Article  Google Scholar 

  • Hartley, G.S., Brunskill, R.T.: Reflection of water drops from surfaces. In: Danielli, J.F. (ed.) Surface Phenomena in Chemistry and Biology, pp. 214–223. Pergamon, London (1958)

    Google Scholar 

  • Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000)

    Article  Google Scholar 

  • Ishino, C., Okumura, K.: Nucleation scenarios for wetting transition on textured surfaces: the effect of contact angle hysteresis. Europhys. Lett. 76, 464–470 (2006)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London (1992)

    Google Scholar 

  • Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. In: Fowkes, F.M. (ed.) Contact Angle, Wettability, and Adhesion. Adv. Chem. Ser, vol. 43, pp. 112–135. American Chemical Society, Washington, DC (1964)

    Chapter  Google Scholar 

  • Jung, Y.C., Bhushan, B.: Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J Micros. 229, 127–180 (2008a)

    Article  MathSciNet  Google Scholar 

  • Jung, Y.C., Bhushan, B.: Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir 24, 6262–6269 (2008b)

    Article  Google Scholar 

  • Kamusewitz, H., Possart, W., Paul, D.: The relation between Young’s equilibrium contact angle and the hysteresis on rough paraffin wax surfaces. Colloids Surf A Physicochem. Eng. Asp 156, 271–279 (1999)

    Article  Google Scholar 

  • Krasovitski, B., Marmur, A.: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)

    Article  Google Scholar 

  • Krupenkin, T.N., Taylor, J.A., Schneider, T.M., Yang, S.: From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 3824–3827 (2004)

    Article  Google Scholar 

  • Krupenkin, T.N., Taylor, J.A., Wang, E.N., Kolodner, P., Hodes, M., Salamon, T.R.: Reversible wetting-dewetting transitions on delectrically tunable superhydrophobic nanostructured surfaces. Langmuir 23, 9128–9133 (2007)

    Article  Google Scholar 

  • Kuo, C.Y., Gau, C.: Control of superhydrophilicity and superhydrophobicity of a superwetting silicon nanowire surface. J Electrochem Soc. 157, K201–K205 (2010)

    Article  Google Scholar 

  • Kusumaatmaja, H., Yeomans, J.M.: Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007)

    Article  Google Scholar 

  • Lafuma, A., Quėrė, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Article  Google Scholar 

  • Li, W., Amirfazli, A.: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. J. Colloid Interface Sci. 292, 195–201 (2006)

    Article  Google Scholar 

  • Lim, H.S., et al.: Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern. J. Am. Chem. Soc. 128, 14458–14459 (2006)

    Article  Google Scholar 

  • Lim, H.S., et al.: UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. J Am. Chem. Soc. 129, 4128 (2007)

    Article  Google Scholar 

  • Liu, Y., Mu, L., Liu, B.H., Kong, J.L.: Controlled switchable surfaces. Chem Euro J. 11, 2622–2631 (2005)

    Article  Google Scholar 

  • Liu, M.J., Jiang, L.: Switchable adhesion on liquid/solid interfaces. Adv. Funct. Mater. 20, 3753–3764 (2010)

    Article  MathSciNet  Google Scholar 

  • Ma, M., Hill, R.M.: Superhydrophobic surfaces. Curr Opin Colloid Interface Sci 11, 193–202 (2006)

    Article  Google Scholar 

  • Macdougall, G., Ockrent, C.: Surface energy relations in liquid solid systems. Proc. R. Soc. London 180, 0151–0173 (1942)

    Article  Google Scholar 

  • Maeda, N., Chen, N., Tirrell, M., Israelachvili, J.N.: Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002)

    Article  Google Scholar 

  • Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003)

    Article  Google Scholar 

  • di Meglio, L.M.: Contact angle hysteresis and interacting surface defects. Europhys. Lett. 17, 607–612 (1992)

    Article  Google Scholar 

  • Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)

    Article  Google Scholar 

  • Nosonovsky, M.: Model for solid-liquid and solid-solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007b)

    Article  Google Scholar 

  • Nosonovsky, M.: On the range of applicability of the Wenzel and Cassie equations. Langmuir 23, 9919–9920 (2007d)

    Article  Google Scholar 

  • Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007e)

    Article  Google Scholar 

  • M. Nosonovsky. Entropy in Tribology (2010a)

    Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Scale effects on dry friction during multiple asperity contact. ASME J Tribol 127, 37–46 (2005a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Roughness optimization for biomimetic superhydrophobic surfaces. Microsys. Technol. 11, 535–549 (2005b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Wetting of rough three-dimensional superhydrophobic surfaces. Microsys. Technol. 12, 273–281 (2006a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsys. Technol. 12, 231–237 (2006b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett. 7, 2633–2637 (2007b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J Phys Condens. Matt. 20, 395005 (2008b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Thermodynamics of surface degradation, self-organization, and self-healing for biomimetic surfaces. Phil. Trans. R. Soc. A 367 (2009)

    Google Scholar 

  • Nosonovsky, M., Bormashenko, E.: Lotus effect: superhydrophobicity and self-cleaning. In: Favret, E., Fuentes, N. (eds.) Functional Properties of Biological Surfaces: Characterization and Technological Applications, pp. 43–78. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  • Oner, D., McCarthy, T.J.: Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir 16, 7777–7778 (2000)

    Article  Google Scholar 

  • Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097–7102 (2004a)

    Article  Google Scholar 

  • Patankar, N.A.: Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20, 8209–8213 (2004b)

    Article  Google Scholar 

  • Pompe, T., Fery, A., Herminghaus, S.: Measurement of contact line tension by analysis of the three-phase boundary with nanometer resolution. In: Drelich, J., Laskowski, J.S., Mittal, K.L. (eds.) Apparent and Microscopic Contact Angles, pp. 3–12. VSP, Utrecht (2000)

    Google Scholar 

  • Reyssat, M., Pepin, A., Marty, F., Chen, Y., Quere, D.: Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306–312 (2006)

    Article  Google Scholar 

  • Richard, D., Quéré, D.: Bouncing water drops. Europhys. Lett. 50, 769–775 (2000)

    Article  Google Scholar 

  • Richard, D., Clanet, C., Quere, D.: Contact time of a bouncing drop. Nature 417, 811 (2002)

    Article  Google Scholar 

  • Ruths, M., Israelachvili, J.N.: Surface forces and nanorheology of molecularly thin films. In: Bhushan, B. (ed.) Springer Handbook of Nanontechnology, 2nd edn, pp. 859–924. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Sharma, R., Ross, D.S.: Kinetics of liquid penetration into periodically constrained capillaries. J Chem. Soc. Faraday Trans. 87, 619–624 (1991)

    Article  Google Scholar 

  • Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.: Super-water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512–19517 (1996)

    Article  Google Scholar 

  • Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Roach, P.: Porous materials show superhydrophobic to superhydrophilic switching. Chem. Commun. 3135–3137 (2005)

    Google Scholar 

  • Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., Chen, Y.: Artificial lotus leaf by nanocasting. Langmuir 21, 8978–8981 (2005)

    Article  Google Scholar 

  • Tretinnikov, O.N.: Wettability and microstructure of polymer surfaces: stereochemical and conformational aspects. In: Drelich, J., Laskowski, J.S., Mittal, K.L. (eds.) Apparent and Microscopic Contact Angle, pp. 111–128. VSP, Utrecht (2000)

    Google Scholar 

  • Tsori, Y.: Discontinuous liquid rise in capillaries with varying cross-sections. Langmuir 22, 8860–8863 (2006)

    Article  Google Scholar 

  • Vedantam, S., Panchagnula, M.V.: Phase field modeling of hysteresis in sessile drops. Phys. Rev. Lett. 99, 176102 (2007)

    Article  Google Scholar 

  • Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C.: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exper. Botany 54, 1295–1303 (2003)

    Article  Google Scholar 

  • Wang, Y., Zhu, Q., Zhang, H.: Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres. J. Mater. Chem. 16, 1212–1214 (2006)

    Article  Google Scholar 

  • Wang, S., Liu, H., Liu, D., Ma, X., Fang, X., Jiang, L.: Enthalpy driven three state switching of a superhydrophilic/superhydrphobic surfaces. Angew. Chem. Int. Ed. 46, 3915–3917 (2007a)

    Article  Google Scholar 

  • Wang, H., Huang, P., Li, Z.: Crack and void healing in metals. In: van der Zwaag, S. (ed.) Self Healing Materials – An Alternative Approach to 20 Centuries of Materials Science, pp. 255–277. Springer, Dordrecht, The Netherlands (2007b)

    Chapter  Google Scholar 

  • Wang, S., Jiang, L.: Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)

    Article  Google Scholar 

  • Wang, S.T., et al.: Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angewandte Chem. 46, 3915–3917 (2007c)

    Article  Google Scholar 

  • Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  • Wu, D., et al.: Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation. Adv Mater. 23, 545 (2011)

    Article  Google Scholar 

  • Xu, X.H., et al.: Switchable adhesion of superhydrophobic ZnO nanorod film. J. Macromol Sci A 47, 1091–1095 (2010)

    Google Scholar 

  • Xu, L., Chen, W., Mulchandani, A., Yan, Y.: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44, 6009–6012 (2005)

    Article  Google Scholar 

  • Shuttleworth, R. and Bailey, G.L.J., “The Spreading of Liquid over a Rigid Solid,” Discussions of the Faraday Society, 3 (1948) 16–22

    Google Scholar 

  • Chen, Y.L., Helm, C.A., and Israelachvili, J., “Molecular Mechanisms Associated with Adhesion and Contact-angle Hysteresis of Monolayer Surfaces,” J. Phys. Chem., 95 (1991) 10736–10747

    Google Scholar 

  • Yoshizawa, H, Chen, Y.L., and Israelachvili, J., “Fundamental Mechanisms of Interfacial Friction–Relation between Adhesion and Friction,” J. Phys. Chem., 97 (1993) 4128–4140

    Google Scholar 

  • Yost, F.G., Michael, J.R., Eisenmann, E.T.: Extensive wetting due to roughness. Acta Metall. Mater. 45, 299–305 (1995)

    Google Scholar 

  • Zeng, H.B., Tirrel, M., Israelachvili, J.: Limit cycles in dynamic adhesion and friction prpcesses: a discussion. J. Adhes. 82, 933–943 (2006)

    Article  Google Scholar 

  • Zhang, X.T., et al.: Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic−superhydrophilic patterning. J Phys. Chem. C 111, 14521–14529 (2007)

    Article  Google Scholar 

  • Carpinteri, A. and Paggi, M. “Size-Scale Effect on the Friction Coefficient,” Int. J. of Solids and Structures, 42 (2005) 2901–2910

    Google Scholar 

  • Onda, T, Shibuichi, S., Satoh, N., and Tsujii, K., “Super-water-repellent Fractal Surfaces,” Langmuir, 12 (1996) 2125–2127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nosonovsky, M., Rohatgi, P.K. (2011). Superhydrophobicity. In: Biomimetics in Materials Science. Springer Series in Materials Science, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0926-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0926-7_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0925-0

  • Online ISBN: 978-1-4614-0926-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics