Skip to main content

Genomics of Temperate Fruit Trees

  • Chapter
  • First Online:
  • 1438 Accesses

Abstract

Temperate fruit species are those adapted to climates in the middle ­latitudes and according to their fruits are usually classified as fruit and nut trees, vine, and berries. Most of the best-known temperate tree crops are members of the Rosaceae family, including pome fruits (e.g., apple, pear, loquat, and quince) and stone fruits (e.g., apricot, cherry, peach, and plum). During the last decades, many efforts have been made in the field of genetics and genomics of these species. Such efforts have generated important tools like molecular markers, genetic and physical maps, SNP arrays and microarrays, among others, ready to be applied in variability studies, in breeding programs, and in general in the better understanding of the genetics behind agricultural important traits in these species. Here we present a brief summary of genomic studies on the most important temperate fruit trees grown for edible use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Fourth Int Peach Symp 1–2:41–49

    Google Scholar 

  • Abel PP, Nelson RS, Hoffmann DB, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    PubMed  CAS  Google Scholar 

  • Aggarwal K, Lee KH (2003) Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic 2:175–184

    PubMed  CAS  Google Scholar 

  • Ainsley PJ, Collins GG, Sedgley M (2002) Factors affecting Agrobacterium-mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.). J Hortic Sci Biotechnol 76:522–528

    Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399

    PubMed  Google Scholar 

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    PubMed  CAS  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:184–184

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Arús PYT, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211

    Google Scholar 

  • Arús P, Picañol R, Howad W (2010) Almond (Prunus dulcis) as a source of genetic variability for peach (Prunus persica). In: Plant and animal genome XVIII conference, San Diego, CA, USA

    Google Scholar 

  • Bao L, Chen KS, Zhang D, Cao YF, Yamamoto T, Teng YW (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971

    CAS  Google Scholar 

  • Bartolini G, Prevost G, Messeri C, Carignani G (1998) Olive germplasm: cultivars and world-wide collections. FAO Library, Rome

    Google Scholar 

  • Bassil N, Lewers K (2009) Genomics opportunities, new crops and new products. In: Genetics and genomics of Rosaceae. Springer, New York, pp 55–70

    Google Scholar 

  • Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    PubMed  CAS  Google Scholar 

  • Belaj A, Munoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458

    PubMed  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    PubMed  CAS  Google Scholar 

  • Bell RL, Scorza R, Srinivasan C, Webb K (1999) Transformation of ‘Beurre Bosc’ pear with the rolC gene. J Am Soc Hortic Sci 124:570–574

    CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    PubMed  CAS  Google Scholar 

  • Blenda AV, Wechter WP, Reighard GL, Baird WV, Abbott AG (2006) Development and characterization of diagnostic AFLP markers in Prunus persica for its response to peach tree short life syndrome. J Hortic Sci Biotechnol 81:281–288

    CAS  Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350

    Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    PubMed  CAS  Google Scholar 

  • Bokszczanin K, Dondini L, Przybyla AA (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. J Appl Genet 50:99–103

    PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    PubMed  CAS  Google Scholar 

  • Boskovic R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250

    CAS  Google Scholar 

  • Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59

    PubMed  Google Scholar 

  • Breton C, Pinatel C, Medail F, Bonhomme F, Berville A (2008) Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Sci 175:524–532

    CAS  Google Scholar 

  • Brini W, Mars M, Hormaza JI (2008) Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hortic 115:337–341

    CAS  Google Scholar 

  • Broothaerts W, Keulemans J, Van Nerum I (2004) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501

    PubMed  CAS  Google Scholar 

  • Bulley SM, Wilson FM, Hedden P, Phillips AL, Croker SJ, James DJ (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnol J 3:215–223

    PubMed  CAS  Google Scholar 

  • Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon JM, Jean-Marc RCMGC (2009) Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem 115:1133–1140

    CAS  Google Scholar 

  • Burgos L, Pérez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11:153–158

    CAS  Google Scholar 

  • Bus VGM, Chagne D, Bassett HCM, Bowatte D, Calenge F, Celton JM, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Google Scholar 

  • Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crops. In: Genetics and Genomics of Rosaceae. Springer, New York. pp. 563–600

    Google Scholar 

  • Bus V, Bassett H, Bowatte D, Chagné D, Ranatunga C, Ulluwishewa D, Wiedow C, Gardiner S (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Google Scholar 

  • Busot GY, McClure B, Ibarra-Sánchez CP, Jiménez-Durán K, Vázquez-Santana S, Cruz-García F (2008) Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. J Exp Bot 59:3187–3201

    PubMed  CAS  Google Scholar 

  • Byrne DH (2007) Molecular marker use in perennial plant breeding. In: Proceedings of the Ivth international symposium on rose research and cultivation, pp 163–167

    Google Scholar 

  • Caballero P, Fernández MA (2004) Loquat, production and market. Options Méditerrannéennes 58:11–20

    Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562

    PubMed  Google Scholar 

  • Campeol E, Flamini G, Chericoni S, Catalano S, Cremonini R (2001) Volatile compounds from three cultivars of Olea europaea from Italy. J Agric Food Chem 49:5409–5411

    PubMed  CAS  Google Scholar 

  • Canli FA (2004) Development of a second generation genetic linkage map for sour cherry using SSR markers. Pak J Biol Sci 7:1676–1683

    Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209

    CAS  Google Scholar 

  • Capote N, Perez-Panades J, Monzo C, Carbonell E, Urbaneja A, Scorza R, Ravelonandro M, Cambra M (2008) Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions. Transgenic Res 17:367–377

    PubMed  CAS  Google Scholar 

  • Carrera L, Sanzol J, Herrero M, Hormaza JI (2009) Genomic characterization of self-incompatibility ribonucleases (S-RNases) in loquat (Eriobotrya japonica Lindl.) (Rosaceae, Pyrinae). Mol Breed 23:539–551

    CAS  Google Scholar 

  • Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307

    PubMed  CAS  Google Scholar 

  • Castro AJ, Bednarczyk A, Schaeffer-Reiss C, Rodriguez-Garcia MI, Van Dorsselaer A, Alche JD (2010) Screening of Ole e 1 polymorphism among olive cultivars by peptide mapping and N-glycopeptide analysis. Proteomics 10:953–962

    PubMed  CAS  Google Scholar 

  • Cavanna M, Marinoni DT, Bounous G, Botta R (2008) Genetic diversity in ancient apple germplasm from northwest Italy. J Hortic Sci Biotechnol 83:549–554

    Google Scholar 

  • Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Google Scholar 

  • Cervera M, López MM, Navarro L, Peña L (1998) Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiol Mol Plant Pathol 52:67–78

    Google Scholar 

  • Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945

    PubMed  CAS  Google Scholar 

  • Cevik V, Ryder C, Popovich A, Manning K, King G, Seymour G (2010) A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.). Tree Genet Genomes 6:271–279

    Google Scholar 

  • Chagne D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage color in apple. BMC Genomics 8:212

    PubMed  Google Scholar 

  • Chagne D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    PubMed  CAS  Google Scholar 

  • Chan ZL, Wang Q, Xu XB, Meng XH, Qin GZ, Li BQ, Tian SP (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807

    PubMed  CAS  Google Scholar 

  • Chaparro JX, Werner DJ, Omalley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  Google Scholar 

  • Chen M, Chen X, Zhou J, Liu Y, Ci Z, Wu Y (2005) Changes of aroma constituents in apricot during fruit development. Sci Agric Sin 38:1244–1299

    CAS  Google Scholar 

  • Chen JL, Yan S, Feng Z, Xiao L, Hu HS (2006) Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chem 97:248–255

    CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach Prunus persica (L) Batsch: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    CAS  Google Scholar 

  • Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228

    PubMed  CAS  Google Scholar 

  • Cirvilleri G, Spina S, Iacona C, Catara A, Muleod R (2008) Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J Plant Physiol 165:1107–1119

    PubMed  CAS  Google Scholar 

  • Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580

    CAS  Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327

    PubMed  CAS  Google Scholar 

  • Consolandi C, Palmieri L, Doveri S, Maestri E, Marmiroli N, Reale S, Lee D, Baldoni L, Tosti N, Severgnini M, De Bellis G, Castiglioni B (2007) Olive variety identification by ligation detection reaction in a universal array format. J Biotechnol 129:565–574

    PubMed  CAS  Google Scholar 

  • Consolandi C, Palmieri L, Severgnini M, Maestri E, Marmiroli N, Agrimonti C, Baldoni L, Donini P, De Bellis G, Castiglioni B (2008) A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur Food Res Technol 227:1429–1438

    CAS  Google Scholar 

  • Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586

    Google Scholar 

  • Crane MB, Brown AG (1937) Incompatibility and sterility in the sweet cherry, Prunus avium L. J Pomol Hortic Sci 15:86–116

    Google Scholar 

  • da Câmara L, Machado M, da Câmara MA, Hanzer V, Weiss H, Regner F, Steinkeliner H, Mattanovich D, Plail R, Knapp E, Kaltho B, Katinger HWD (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum pox virus. Plant Cell Rep 11:25–29

    Google Scholar 

  • Dandekar AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ (2004) Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 13:373–384

    CAS  Google Scholar 

  • Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13

    PubMed  Google Scholar 

  • de Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF (1996) Agrobacterium-mediated transformation of apple (Malus × domestica Borkh): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Google Scholar 

  • de Bondt A, Zaman S, Broekaert WF, Cammue B, Keulemans J (1998) Genetic transformation of apple (Malus pumila Mill.) for increased fungal resistance: in vitro antifungal activity in protein extracts of transgenic apple expressing RS-AFP2 or ACE-AMP1. Acta Hortic 484:565–570

    Google Scholar 

  • de La Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282

    PubMed  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin, pp 1–215

    Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Decroocq V, Hagen LS, Fave MG, Eyquard JP, Pierronnet A (2004) Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol Breed 13:135–142

    CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    PubMed  CAS  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335

    PubMed  CAS  Google Scholar 

  • Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    PubMed  CAS  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    PubMed  CAS  Google Scholar 

  • Di Nicola-Negri E, Brunetti A, Tavazza M, Ilardi V (2005) Hairpin RNA-mediated silencing of Plum pox virus P1 and HC-Pro genes for efficient and predictable resistance to the virus. Transgenic Res 14:989–994

    PubMed  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach Prunus persica (L.) Batsch and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2007) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13

    Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    CAS  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Google Scholar 

  • Dondini L, Pierantoni L, Ancarani V, D’Angelo M, Cho KH, Shin IS, Musacchi S, Kang SJ, Sansavini S (2008) The inheritance of the red color character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breed 127:524–526

    Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125:76–80

    CAS  Google Scholar 

  • Druart P, Delporte F, Brazda M, Ugarte-Ballon C, da Câmara MA, da Câmara L, Machado M, Jacquemin J, Watillon B (1998) Genetic transformation of cherry trees. Acta Hortic 468:71–76

    Google Scholar 

  • Dumanoglu H, Gunes NT, Aygun A, San B, Akpinar AE, Bakir M (2009) Analysis of clonal variations in cultivated quince (Cydonia oblonga ‘Kalecik’) based on fruit characteristics and SSR markers. N Z J Crop Hortic Sci 37:113–120

    CAS  Google Scholar 

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analyzed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521

    CAS  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    PubMed  CAS  Google Scholar 

  • Escalettes V, Dahuron F, Ravelonandro M, Dosba F (1994) Utilisation de la transgénose pour l’obtention de pruniers et d’abricotiers exprimant le gène de la protéine capside du Plum pox potyvirus. Bull OEPP/EPPO Bull 24:705–711

    Google Scholar 

  • Esmenjaud D, Dirlewanger E (2007) Plum. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4: Fruits and nuts. Springer, Berlin, pp 119–135

    Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    PubMed  CAS  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    PubMed  CAS  Google Scholar 

  • Evans KM, Govan CL, Fernandez-Fernandez F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–1031

    PubMed  CAS  Google Scholar 

  • Fabbri A, Lambardi M, Ozden-Tokatli Y (2009) Olive breeding. In: Priyadarshan PM, Jain M (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 423–465

    Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504

    PubMed  CAS  Google Scholar 

  • Faize M, Sourice S, Dupuis F, Parisi L, Gautier MF, Chevreau E (2004) Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus × domestica Borkh.). Plant Sci 167:347–354

    CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    PubMed  Google Scholar 

  • Fang JG, Twito T, Zhang Z, Chao CCT (2006) Genetic relationships among fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars evaluated with AFLP and SNP markers. Genome 49:1256–1264

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2010) ProdStat: http://faostat.fao.org/site/339/default.aspx. Last time accessed Mar 2010

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71

    PubMed  CAS  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV (2010a) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    PubMed  CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, Hofer M, Dorschel C, Schmoock S, Gau AE, Halbwirth H, Hanke MV (2010b) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635

    PubMed  CAS  Google Scholar 

  • Folta KM, Gardiner SE (2009) Genetics and genomics of Rosaceae. Springer, New York, pp 636

    Google Scholar 

  • Fonseca S, Hackler L, Zvara A, Ferreira S, Balde A, Dudits D, Pals MS, Puskas LG (2004) Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays. Plant Sci 167:457–469

    CAS  Google Scholar 

  • Fukuda S, Hiehata N, Yamamoto T, Terai O, Nesumi H (2005) Development of DNA markers linked to the resistance gene (Pse a) to loquat canker. J Jpn Soc Hortic Sci 74:345–349

    CAS  Google Scholar 

  • Fuzfai Z, Katona ZF, Kovacs E, Molnar-Perl I (2004) Simultaneous identification and quantification of the sugar, sugar alcohol, and carboxylic acid contents of sour cherry, apple, and ber fruits, as their trimethylsilyl derivatives, by gas chromatography-mass spectrometry. J Agric Food Chem 52:7444–7452

    PubMed  Google Scholar 

  • Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera N, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128

    PubMed  Google Scholar 

  • Gao ZS, van de Weg WE, Schaart JG, van Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen L (2005) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097

    PubMed  CAS  Google Scholar 

  • Gao M, Matsuta N, Murayama H, Toyomasu T, Mitsuhashi W, Dandekar AM, Tao R, Nishimura K (2007) Gene expression and ethylene production in transgenic pear (Pyrus communis cv. ‘La France’) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173:32–42

    CAS  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4: Fruits and nuts. Springer, Berlin, pp 1–62

    Google Scholar 

  • Garkava-Gustavsson L, Brantestam AK, Sehic J, Nybom H (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas 145:99–112

    PubMed  CAS  Google Scholar 

  • Gasic K, Han YP, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411

    CAS  Google Scholar 

  • Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    PubMed  CAS  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842

    CAS  Google Scholar 

  • Ghosh AK, Lukens LN, Hunter DM, Strommer JN (2006) European and Asian pears: simple sequence repeat-polyacrylamide gel electrophoresis-based analysis of commercially important North American cultivars. HortScience 41:304–309

    CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    CAS  Google Scholar 

  • Gil FS, Busconi M, Machado AD, Fogher C (2006) Development and characterization of microsatellite loci from Olea europaea. Mol Ecol Notes 6:1275–1277

    CAS  Google Scholar 

  • Gilissen L, Bolhaar STH, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, van de Weg WE, van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    PubMed  CAS  Google Scholar 

  • Gisbert AD, Lopez-Capuz I, Soriano JM, Llacer G, Romero C, Badenes ML (2009a) Development of microsatellite markers from loquat, Eriobotrya japonica (Thunb.) Lindl. Mol Ecol Resour 9:803–805

    PubMed  CAS  Google Scholar 

  • Gisbert AD, Romero C, Martinez-Calvo J, Leida C, Llacer G, Badenes ML (2009b) Genetic diversity evaluation of a loquat (Eriobotrya japonica (Thunb) Lindl) germplasm collection by SSRs and S-allele fragments. Euphytica 168:121–134

    CAS  Google Scholar 

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-García F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810

    PubMed  CAS  Google Scholar 

  • Goldway M, Sapir G, Stern RA (2007) Molecular basis and horticultural application of the gametophytic self-incompatibility system in Rosaceous tree fruit. Plant Breed Rev 28:215–237

    CAS  Google Scholar 

  • Golz JF, Oh HY, Su V, Kusaba M, Newbigin E (2001) Genetic analysis of Nicotiana pollen-part mutants is consistent with the presence of an S-ribonuclease inhibitor at the S locus. Proc Natl Acad Sci USA 98:15372–15376

    PubMed  CAS  Google Scholar 

  • Granell A, Crisosto CH, Martí-Ibáñez C, Gradziel TM, Froment J, Peace C (2006) “ChillPeach” a functional database to understand peach chilling injury. In: Third international Rosaceae genomics conference, Napier. http://mainlabclemsonedu/gdr/comunity/conferences/RG3_abstractspdf

  • Grimplet J, Romieu C, Audergon J-M, Marty I, Albagnac G, Lambert P, Bouchet J-P, Terrier N (2005) Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13006 expressed sequence tags. Physiol Plant 125:281–292

    Google Scholar 

  • Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44

    CAS  Google Scholar 

  • Guarino C, Arena S, De Simone L, D’Ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007) Proteomic analysis of the major soluble components in Annurca apple flesh. Mol Nutr Food Res 51:255–262

    PubMed  CAS  Google Scholar 

  • Guichard E, Souty M (1988) Comparison of the relative quantities of aroma compounds found in fresh apricot (Prunus armeniaca) from 6 different varieties. Z Lebensm Unters Forsch 186:301–307

    CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    CAS  Google Scholar 

  • Guillot S, Peytavi L, Bureau S, Boulanger R, Lepoutre JP, Crouzet J, Schorr-Galindo S (2006) Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem 96:147–155

    CAS  Google Scholar 

  • Gutiérrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Google Scholar 

  • Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745

    CAS  Google Scholar 

  • Hammerschlag FA, Smigocki AC (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain of Agrobacterium tumefaciens. HortScience 33:897–899

    Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637

    PubMed  CAS  Google Scholar 

  • Han YP, Chagne D, Gasic K, Rikkerink EHA, Beever JE, Gardiner SE, Korban SS (2009) BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics 93:282–288

    PubMed  CAS  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    CAS  Google Scholar 

  • Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of non-functional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172:1191–1198

    PubMed  Google Scholar 

  • He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Herndl A, Marzban G, Kolarich D, Hahn R, Boscia D, Hemmer W, Maghuly F, Stoyanova E, Katinger H, Laimer M (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28:437–448

    PubMed  CAS  Google Scholar 

  • Heyens K, Valcke R, Dumont D, Robben J, Noben JP (2006) Differential expression of proteins in apple following inoculation with Erwinia amylovoria. Acta Hort(ISHS) 704:489–494

    Google Scholar 

  • Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Res 13:427–436

    PubMed  CAS  Google Scholar 

  • Hily JM, Scorza R, Webb K, Ravelonandro M (2005) Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe Interact 18:794–799

    PubMed  CAS  Google Scholar 

  • Hily JM, Ravelonandro M, Damsteegt V, Bassett C, Petri C, Liu Z, Scorza R (2007) Plum poxvirus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to Plum pox virus in Nicotiana benthamiana Domin. and plum (Prunus domestica L.). J Am Soc Hortic Sci 132:850–858

    CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    CAS  Google Scholar 

  • Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294

    CAS  Google Scholar 

  • Hormaza JI, Yamane H, Rodrigo J (2007) Apricot. In: Genome Mapping and Molecular Breeding in plants (Fruits and Nuts). Springer-Verlag, Berlin pp 171–187

    Google Scholar 

  • Horn R, Lecouls AC, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu YS, Kim HR, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    PubMed  Google Scholar 

  • Horvath A, Zanetto A, Tavaud M, Christmann H, Laigret F (2008) Origin of sour cherry (Prunus cerasus L.) genomes. In: Proceedings of the Vth international cherry symposium, vol 1–2, pp 131–136

    Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    PubMed  CAS  Google Scholar 

  • Huang S, Lee HS, Karunanandaa B, Kao TH (1994) Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6:1021–1028

    PubMed  CAS  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    PubMed  CAS  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13167–13171

    PubMed  CAS  Google Scholar 

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sex Plant Reprod 16:235–243

    CAS  Google Scholar 

  • Ikeda K, Ushijima K, Yamane H, Tao R, Hauck NR, Sebolt AM, Iezzoni AF (2005) Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17:289–296

    CAS  Google Scholar 

  • Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184

    CAS  Google Scholar 

  • Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arus P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Hortic Sci Biotechnol 84:168–175

    Google Scholar 

  • Inoue E, Kasumi M, Sakuma F, Anzai H, Amano K, Hara H (2006) Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci Hortic 107:254–258

    CAS  Google Scholar 

  • Ishikawa S, Kato S, Imakawa S, Mikami T, Shimamoto Y (1992) Organelle DNA polymorphism in apple cultivars and rootstocks. Theor Appl Genet 83(8):963–967

    CAS  Google Scholar 

  • James DJ, Uratsu SL, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectans like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    CAS  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    PubMed  Google Scholar 

  • Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arus P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176

    CAS  Google Scholar 

  • Jimenez S, Li ZG, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biol 10:25

    PubMed  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F-2 progeny. Theor Appl Genet 97:1034–1041

    CAS  Google Scholar 

  • Joshi S, Soriano JM, Schaart J, Broggini GAL, Szankowski I, Jacobsen E, Krens F, Schouten H (2009) Approaches for development of cisgenic apples. Transgenic Plant J 3:40–46

    Google Scholar 

  • Juárez-Díaz JA, McClure B, Vázquez-Santana S, Guevara-García A, León-Mejía P, Márquez-Guzmán J, Cruz–García F (2006) A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNases in vitro. J Biol Chem 281:3418–3424

    PubMed  Google Scholar 

  • Jung S, Main D, Staton M, Cho IH, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:8

    Google Scholar 

  • Jung S, Jiwan D, Cho IH, Lee TI, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76

    PubMed  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60:2299–2301

    PubMed  CAS  Google Scholar 

  • Katayama H, Adachi S, Yamamoto T, Uematsu C (2007) A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet Resour Crop Evol 54:1573–1585

    CAS  Google Scholar 

  • Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121

    CAS  Google Scholar 

  • Kitahara K, Matsumoto S, Yamamoto T, Soejima J, Kimura T, Komatsu H, Abe K (2005) Molecular characterization of apple cultivars in Japan by S-RNase analysis and SSR markers. J Am Soc Hortic Sci 130:885–892

    CAS  Google Scholar 

  • Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka E, Brown SK, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett 22:373–381

    CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Krath BN, Eriksen FD, Pedersen BH, Gilissen L, Van de Weg WE, Dragsted LO (2009) Development of hypo-allergenic apples: silencing of the major allergen Mal d 1 gene in ‘Elstar’ apple and the effect of grafting. J Hortic Sci Biotechnol 84:52–57

    Google Scholar 

  • Kundu JK, Briard P, Hily JM, Ravelonandro M, Scorza R (2008) Role of the 25–26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with Plum pox virus. Virus Genes 36:215–220

    PubMed  CAS  Google Scholar 

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–42

    PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    PubMed  CAS  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping Plum pox virus resistance. Tree Genet Genomes 4:481–493

    Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ × ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Google Scholar 

  • Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of ‘Dixiland’ peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315–4333

    PubMed  CAS  Google Scholar 

  • Lau JM, Korban SS (2010) Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. J Plant Physiol. doi:10.1016/j.jplph.2010.02.003

    Google Scholar 

  • Layne REC, Sherman WB (1986) Interspecific hybridization of Prunus. HortScience 21:48–51

    Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6:S16

    PubMed  Google Scholar 

  • Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    PubMed  CAS  Google Scholar 

  • Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol 149:791–802

    PubMed  CAS  Google Scholar 

  • Leida C, Martí GJT, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy-release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    PubMed  CAS  Google Scholar 

  • Lewis D, Modlibowska I (1942) Genetical studies in pears IV. Pollen-tube growth and incompatibility. J Genet 43:211–222

    Google Scholar 

  • Li HH, Flachowsky H, Fischer TC, Hanke MV, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    PubMed  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T, Espley R, Hellens R, Allan A (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    PubMed  Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    CAS  Google Scholar 

  • Lopes MS, Mendonca D, Sefc KM, Gil FS, Machado AD (2004) Genetic evidence of intra-cultivar variability within Iberian olive cultivars. HortScience 39:1562–1565

    CAS  Google Scholar 

  • López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Rep 28:1781–1790

    PubMed  Google Scholar 

  • Lu X-E, Liu Y-Q (2008) Analysis of volatile oil in pre and post processed pieces of Eriobotrya japonica by GC-MS. Zhong Yao Cai 31:1625–1626

    PubMed  CAS  Google Scholar 

  • Luu DT, Qin XK, Morse D, Cappadocia M (2000) S-RNase uptake by compatible pollen tubes in GSI. Nature 407:649–651

    PubMed  CAS  Google Scholar 

  • Maghuly F, Machado AD, Leopold S, Khan MA, Katinger H, Laimer M (2007) Long-term stability of marker gene expression in Prunus subhirtella: a model fruit tree species. J Biotechnol 127:310–321

    PubMed  CAS  Google Scholar 

  • Maheswaran G, Pridmore L, Franz P, Anderson MA (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782

    PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    CAS  Google Scholar 

  • Malnoy M, Aldwinckle HS (2009) Apple transformation and translational genomics. In: Genetics and genomics of Rosaceae. Springer, New York, pp 143–162

    Google Scholar 

  • Malnoy M, Venisse JS, Chevreau E (2005a) Expression of a bacterial effector, harpin N, causes increased resistance to fire blight in Pyrus communis. Tree Genet Genomes 1:41–49

    Google Scholar 

  • Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E (2005b) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632–638

    PubMed  CAS  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He Y, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:568–1580

    Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Pascal-Omenaca L, Aldwinckle HS, Oh CS, Beer SV (2008a) Silencing of HIPM, the apple protein that interacts with HrpN Of Erwinia amylovora. Acta Hortic 793:261–264

    Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008b) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    PubMed  CAS  Google Scholar 

  • Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435

    CAS  Google Scholar 

  • Marchese A, Boskovic R, Caruso T, Raimondo A, Cutuli M, Tobutt KR (2007) A new self-incompatibility haplotype in sweet cherry ‘Kronio’, S5′ attributable to a pollen-part mutation in the SFB gene. J Exp Bot 58:4347–4356

    PubMed  CAS  Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hortic Sci 78:410–416

    CAS  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957

    PubMed  CAS  Google Scholar 

  • McClure B, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc Natl Acad Sci USA 96:13548–13553

    PubMed  CAS  Google Scholar 

  • McClure BA, Cruz-García F, Beecher B, Sulaman W (2000) Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann Bot 85:113–123

    Google Scholar 

  • McCouch SR (2001) Genomics and synteny. Plant Physiol 125:152–155

    PubMed  CAS  Google Scholar 

  • Messeguer R, Arus P, Carrera M (1987) Identification of peach cultivars with pollen isozymes. Sci Hortic 31:107–117

    Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    CAS  Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18

    PubMed  Google Scholar 

  • Micheletti D, Troggio M, Baldi P, Costa F, Malnoy M, Magnano P, Velasco R, Salvi S (2010) LD estimation, analyses of diversity and domestication in apple. In: Second international symposium on genomics of plant genetic resources, Bologna, April 2010

    Google Scholar 

  • Mnejja M, Garcia-Mas M, Howad W, Badenes ML, Arus P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535

    CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon J-M, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes. doi: 10.1007/s11295-010-0284-z

    Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL x environment effects for grain yield and related traits in maize. Theor Appl Genet 110:92–105

    PubMed  CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hortic Sci 78:279–287

    CAS  Google Scholar 

  • Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E (2009) Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52:252–260

    PubMed  CAS  Google Scholar 

  • Napoli A, Aiello D, Di Donna L, Moschidis P, Sindona G (2008) Vegetable proteomics: the detection of ole e 1 isoallergens by peptide matching of MALDI MS/MS spectra of underivatized and dansylated glycopeptides. J Proteome Res 7:2723–2732

    PubMed  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    PubMed  Google Scholar 

  • Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, Gonzalez M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43

    PubMed  Google Scholar 

  • O’farrell PZ, Goodman HM, Ofarrell PH (1977) High-resolution 2-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1141

    PubMed  Google Scholar 

  • Obenland DM, Vensel WH, Hurkman WJ (2008) Alterations in protein expression associated with the development of mealiness in peaches. J Hortic Sci Biotechnol 83:85–93

    CAS  Google Scholar 

  • Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397

    PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587

    PubMed  Google Scholar 

  • Olukolu BA, Trainin T, Fan SH, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    PubMed  CAS  Google Scholar 

  • Oraguzie NC, Yamamoto T, Soejima J, Suzuki T, De Silva HN (2005) DNA fingerprinting of apple (Malus spp.) rootstocks using simple sequence repeats. Plant Breed 124:197–202

    CAS  Google Scholar 

  • Oshita S, Shima K, Haruta T, Seo Y, Kawagoe Y, Nakayama S, Takahara H (2000) Discrimination of odors emanating from ‘La France’ pear by semi-conducting polymer sensors. Comput Electron Agric 26:209–216

    Google Scholar 

  • Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to Plum pox virus without preventing local infection. BMC Biotechnol 3:7

    PubMed  Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824

    PubMed  CAS  Google Scholar 

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31

    CAS  Google Scholar 

  • Pedreschi R, Vanstreels E, Carpentier S, Hertog M, Lammertyn J, Robben J, Noben JP, Swennen R, Vanderleyden J, Nicolai BM (2007) Proteomic analysis of core breakdown disorder in conference pears (Pyrus communis L.). Proteomics 7:2083–2099

    PubMed  CAS  Google Scholar 

  • Pedreschi R, Hertog M, Robben J, Lilley KS, Karp NA, Baggerman G, Vanderleyden J, Nicolai B (2009) Gel-based proteomics approach to the study of metabolic changes in pear tissue during storage. J Agric Food Chem 57:6997–7004

    PubMed  CAS  Google Scholar 

  • Pedryc A, Ruthner S, Hermán R, Krska B, Hegedus A, Halász J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci Hortic 121:19–26

    CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Gonzalez-Diaz AJ, Diaz-Hernandez MB (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Sci Hortic 117:160–166

    CAS  Google Scholar 

  • Pérez-Clemente RM, Pérez-Sanjuán A, García-Férriz L, Beltrán JP, Cañas LA (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breed 14:419–427

    Google Scholar 

  • Peschel S, Franke R, Schreiber L, Knoche M (2007) Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 68:1017–1025

    PubMed  CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    PubMed  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324

    PubMed  CAS  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317

    Google Scholar 

  • Pilarova P, Marandel G, Decroocq V, Salava J, Krska B, Abbott AG (2010) Quantitative trait analysis of resistance to Plum pox virus in the apricot F1 progeny “Harlayne” × “Vestar”. Tree Genet Genomes 6:467–475

    Google Scholar 

  • Puterka GJ, Bocchetti C, Dang P, Bell RL, Scorza R (2002) Pear transformed with a lytic peptide gene for disease control affects nontarget organism, Pear Psylla (Homoptera: Psyllidae). J Econ Entomol 95:797–802

    PubMed  CAS  Google Scholar 

  • Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:571–581

    Google Scholar 

  • Qin GZ, Meng XH, Wang Q, Tian SP (2009a) Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J Proteome Res 8:2449–2462

    PubMed  CAS  Google Scholar 

  • Qin GZ, Wang Q, Liu J, Li BQ, Tian SP (2009b) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteomics 9:4241–4253

    PubMed  CAS  Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. In: Proceedings of the Xxv international horticultural congress, vol 11, pp 233–241

    Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P-davidiana. Theor Appl Genet 109:884–897

    PubMed  CAS  Google Scholar 

  • Rallo P, Dorado G, Martin A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989

    CAS  Google Scholar 

  • Rallo P, Tenzer I, Gessler C, Baldoni L, Dorado G, Martin A (2003) Transferability of olive microsatellite loci across the genus Olea. Theor Appl Genet 107:940–946

    PubMed  CAS  Google Scholar 

  • Ramos-Cabrer AM, Diaz-Hernandez MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hortic Sci Biotechnol 82:257–265

    CAS  Google Scholar 

  • Ravelonandro M, Briard P, Monsion M, Scorza R, Renaud R (2002) Stable transfer of the Plum Pox Virus (PPV) capsid transgene to seedlings of two French cultivars ‘Prunier d’Ente 303’ and ‘Quetsche 2906’, and preliminary results of PPV challenge assays. Acta Hortic 577:91–96

    CAS  Google Scholar 

  • Reale S, Doveri S, Diaz A, Angiolillo A, Lucentini L, Pilla F, Martin A, Donini P, Lee D (2006) SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49:1193–1205

    PubMed  CAS  Google Scholar 

  • Renaut J, Hausman JF, Bassett C, Artlip T, Cauchie HM, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genetics & Genomes 4:589–600

    PubMed  CAS  Google Scholar 

  • Reuter A, Fortunato D, Garoffo LP, Napolitano L, Scheurer S, Giuffrida MG, Vieths S, Conti AD (2005) Novel isoforms of Pru av 1 with diverging immunoglobulin E binding properties identified by a synergistic combination of molecular biology and proteomics. Proteomics 5:282–289

    PubMed  CAS  Google Scholar 

  • Reynoird JP, Mourgues F, Norelli JL, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31

    CAS  Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347

    Google Scholar 

  • Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654

    PubMed  CAS  Google Scholar 

  • Roe MR, Griffin TJ (2006) Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics 6:4678–4687

    PubMed  CAS  Google Scholar 

  • Romero C, Pedryc A, Muñoz V, Llácer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252

    PubMed  CAS  Google Scholar 

  • Romero C, Vilanova S, Burgos L, Martínez-Calvo J, Vicente M, Llácer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56:145–157

    PubMed  CAS  Google Scholar 

  • Rowan DD, Hunt MB, Alspach PA, Whitworth CJ, Oraguzie NC (2009a) Heritability and genetic and phenotypic correlations of apple (Malus × domestica) fruit volatiles in a genetically diverse breeding population. J Agric Food Chem 57:7944–7952

    PubMed  CAS  Google Scholar 

  • Rowan DD, Hunt MB, Dimouro A, Alspach PA, Weskett R, Volz RK, Gardiner SE, Chagne D (2009b) Profiling fruit volatiles in the progeny of a ‘Royal Gala’ × ‘Granny Smith’ apple (Malus × domestica) cross. J Agric Food Chem 57:7953–7961

    PubMed  CAS  Google Scholar 

  • Royo J, Kuntz C, Kowyama Y, Anderson M, Clarke AE (1994) Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci USA 91:6511–6514

    PubMed  CAS  Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Google Scholar 

  • Rudell DR, Mattheis JR (2009) Superficial scald development and related metabolism is modified by postharvest light irradiation. Postharvest Biol Technol 51:174–182

    CAS  Google Scholar 

  • Rudell DR, Mattheis JP, Curry FA (2008) Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J Agric Food Chem 56:1138–1147

    PubMed  CAS  Google Scholar 

  • Rudell DR, Mattheis JP, Hertog M (2009) Metabolomic change precedes apple superficial scald symptoms. J Agric Food Chem 57:8459–8466

    PubMed  CAS  Google Scholar 

  • Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384

    PubMed  CAS  Google Scholar 

  • Sargent DJ, Marchese A, Simpson DW, Howad W, Fernandez-Fernandez F, Monfort A, Arus P, Evans KM, Tobutt KR (2009) Development of “universal” gene-specific markers from Malus spp. cDNA sequences, their mapping and use in synteny studies within Rosaceae. Tree Genet Genomes 5:133–145

    Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Redh.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Sassa H, Hirano H, Nishio T, Koba T (1997) Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J 12:223–227

    CAS  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    PubMed  CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma JH, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao JL, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway([w]). Plant Physiol 144:1899–1912

    PubMed  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L) express the Plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    CAS  Google Scholar 

  • Sefc KM, Lopes S, Mendonca D, Dos Santos MR, Machado MLD, Machado AD (2000) Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173

    PubMed  CAS  Google Scholar 

  • Serrano I, Pelliccione S, Olmedilla A (2010) Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. Plant Cell Rep 29(6):561–572. doi:10.1007/s00299-010-0845-5

    PubMed  Google Scholar 

  • Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, T-h K (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305

    PubMed  CAS  Google Scholar 

  • Solis-Solis HM, Calderon-Santoyo M, Gutierrez-Martinez P, Chorr-Galindo SS, Ragazzo-Sancheza JA (2007) Discrimination of eight varieties of apricot (Prunus armeniaca) by electronic nose, LLE and SPME using GC-MS and multivariate analysis. Sens Actuat B-Chem 125:415–421

    Google Scholar 

  • Song GQ, Sink KC (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus × P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep 25:117–123

    PubMed  CAS  Google Scholar 

  • Sonneveld T, Tobbutt KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:37–51

    PubMed  CAS  Google Scholar 

  • Soriano JM, Romero C, Vilanova S, Llacer G, Badenes ML (2005) Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 48:108–114

    PubMed  CAS  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martinez-Calvo J, Llacer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring Plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach Prunus persica (L.) Batsch. Theor Appl Genet 101:421–428

    CAS  Google Scholar 

  • Sosinski B, Shulaev V, Dhingra A, Kalyanaraman A, Bumgarner R, Rokhsar D, Verde I, Velasco R, Abbott AG (2009) Rosaceaous genome sequencing: perspectives and progress. In: Genetics and genomics of Rosaceae. Springer, New York, pp 601–615

    Google Scholar 

  • Stockinger EJ, Mulinix CA, Long CM, Brettin TS, Iezzoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J Hered 87:214–218

    PubMed  CAS  Google Scholar 

  • Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847

    Google Scholar 

  • Sung SK, Jeong DH, Nam JM, Kim SH, Kim SR, An G (1998) Expressed sequence tags of fruits, peels, and carpels and analysis of mRNA expression levels of the tagged cDNAs of fruits from the Fuji apple. Mol Cells 8:565–577

    PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with stilbene synthase gene from grapevine (Vitis vinifera L.) and PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    PubMed  CAS  Google Scholar 

  • Szankowski I, Flachowsky H, Li HH, Halbwirth H, Treutter D, Regos I, Hanke MV, Stich K, Fischer TC (2009a) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692

    PubMed  CAS  Google Scholar 

  • Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009b) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358

    Google Scholar 

  • Takahashi H, Sumitani H, Inada Y, Mori D, Nakano Y (2000) Potent aroma volatiles in fresh loquat and its canned product. J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 47:302–310

    CAS  Google Scholar 

  • Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, Norioka N, Norioka S, Nakanishi T (2004) Sequence of the S-9-RNase cDNA and PCR-RFLP system for discriminating S-1- to S-9-allele in Japanese pear. Euphytica 135:157–167

    CAS  Google Scholar 

  • Takeoka GR, Buttery RG, Flath RA (1992) Volatile constituents of Asian pear (Pyrus serotina). J Agric Food Chem 40:1925–1929

    CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    PubMed  CAS  Google Scholar 

  • Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H (2007) Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol Biol 63:109–123

    PubMed  CAS  Google Scholar 

  • Teo G, Suziki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847

    PubMed  CAS  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752

    PubMed  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Tian YK, Wang CH, Zhang JS, James C, Dai HY (2005) Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers. Euphytica 145:181–188

    CAS  Google Scholar 

  • Tian L, Canli FA, Wang X, Sibbald S (2009) Genetic transformation of Prunus domestica L. using the hpt gene coding for hygromycin resistance as the selectable marker. Sci Hortic 119:339–343

    CAS  Google Scholar 

  • Tittarelli A, Santiago M, Morales A, Meisel LA, Silva H (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 9:121

    PubMed  Google Scholar 

  • Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray mu PEACH1.0 to investigate transcriptome changes during transition from pre-climacteric to climacteric phase in peach fruit. Plant Sci 170:606–613

    CAS  Google Scholar 

  • Urtubia C, Devia J, Castro A, Zamora P, Aguirre C, Tapia E, Barba P, Dell’Orto P, Moynihan MR, Petri C, Scorza R, Prieto H (2008) Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep 27:1333–1340

    PubMed  CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    PubMed  CAS  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume. Plant J 39:573–586

    PubMed  CAS  Google Scholar 

  • van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao QZ, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi: 10.1371/journal.pone.0001326

    PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus [times] domestica Borkh.). Nat Genet 42:833–839

    PubMed  CAS  Google Scholar 

  • Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I (2007) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7:307–310

    CAS  Google Scholar 

  • Vikram A, Prithiviraj B, Hamzehzarghani H, Kushalappa A (2004a) Volatile metabolite profiling to discriminate diseases of McIntosh apple inoculated with fungal pathogens. J Sci Food Agric 84:1333–1340

    CAS  Google Scholar 

  • Vikram A, Prithiviraj B, Kushalappa AC (2004b) Use of volatile metabolite profiles to discriminate fungal diseases of Cortland and empire apples. J Plant Pathol 86:215–225

    CAS  Google Scholar 

  • Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llacer G, Badenes ML (2003) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Mol Genet Genomics 269:685–691

    PubMed  CAS  Google Scholar 

  • Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006a) Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol 142:629–641

    PubMed  CAS  Google Scholar 

  • Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llacer G, Badenes ML (2006b) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Mol Ecol Notes 6:789–791

    CAS  Google Scholar 

  • Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, Cambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:421

    Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hortic Sci 131:408–417

    CAS  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley A, Miller DD, Forsline PL (2009) Novel diversity identified in a wild apple population from the Kyrgyz Republic. HortScience 44:516–518

    Google Scholar 

  • Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224

    CAS  Google Scholar 

  • Wang Y, Tsukamoto T, Yi KW, Huang S, McCubbin AG, Kao TH (2004) Chromosome walking in the Petunia inflata self-incompatibility (S-) locus and gene identification in an 881-kb contig containing S2-RNase. Plant Mol Biol 54:727–742

    PubMed  CAS  Google Scholar 

  • Wang W, Alche JD, Rodriguez-Garcia MI (2007) Characterization of olive seed storage proteins. Acta Physiol Plantarum 29:439–444

    CAS  Google Scholar 

  • Wang YJ, Yang CX, Li SH, Yang L, Wang YN, Zhao JB, Jiang Q (2009) Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chem 116:356–364

    CAS  Google Scholar 

  • Watanabe M, Yamamoto T, Ohara M, Nishitani C, Yahata S (2008) Cultivar differentiation identified by SSR markers and the application for polyploid loquat plants. J Jpn Soc Hortic Sci 77:388–394

    CAS  Google Scholar 

  • Watari A, Hanada T, Yamane H, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Beppu K, Kataoka I (2007) A low transcriptional level of Se-RNase in the Se-haplotype confers self-compatibility in Japanese plum. J Am Soc Hortic Sci 132:396–406

    CAS  Google Scholar 

  • Weeden NF, Hemmat M, Lawson DM, Lodhi M, Bell RL, Manganaris AG, Reisch BI, Brown SK, Ye GN (1994) Development and application of molecular marker linkage maps in woody fruit crops. Euphytica 77:71–75

    Google Scholar 

  • Wehrhahn C, Allard RW (1965) Detection and measurement of effects of individual genes involved in inheritance of a quantitative character in wheat. Genetics 51:109

    PubMed  CAS  Google Scholar 

  • Welander M, Pawlicki N, Holefors A, Wilson F (1998) Genetic transformation of the apple rootstock M26 with the RolB gene and its influence on rooting. J Plant Physiol 153:371–380

    CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    PubMed  CAS  Google Scholar 

  • Wen XP, Ban YSK, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103

    PubMed  CAS  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133:298–317

    PubMed  CAS  Google Scholar 

  • Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Sci Hortic 120:348–352

    Google Scholar 

  • Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach Prunus persica (L.) Batsch SSR sequences. Heredity 89:56–63

    PubMed  Google Scholar 

  • Wünsch A, Hormaza JI (2004) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17:203–210

    Google Scholar 

  • Xu ML, Song JQ, Cheng ZK, Jiang JM, Korban SS (2001) A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104–1113

    PubMed  CAS  Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001a) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    CAS  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001b) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara I, Hayashi T (2002b) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301

    CAS  Google Scholar 

  • Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004a) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54:239–244

    CAS  Google Scholar 

  • Yamamoto T, Kirnura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, van de Weg WE, Hayashi T (2004b) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. In: Proceedings of the XIth eucarpia symposium on fruit breeding and genetics, vols 1 and 2, pp 51–56

    Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    CAS  Google Scholar 

  • Yamamoto T, Terakami S, Kimura T, Sawamura Y, Takada N, Hirabayashi T, Imai T, Nishitani C (2009) Reference genetic linkage maps of European and Japanese pears. Acta Hortic 814:599–602

    Google Scholar 

  • Yamane H, Tao R (2009) Molecular basis of self-(in)compatibility and current status of S-genotyping in Rosaceous fruit trees. J Jpn Soc Hortic Sci 78:137–157

    CAS  Google Scholar 

  • Yamane H, Ikeda K, Hauck NR, Iezzoni F, Tao R (2003) Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54:2431–2437

    PubMed  CAS  Google Scholar 

  • Zhang CF, Tian SP (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 degrees C. Food Chem 115:405–411

    CAS  Google Scholar 

  • Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink M, Olmstead JW, Iezzoni AF (2009) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krska B, Abbott AG (2008a) Origin of resistance to Plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genet Genomes 4:403–417

    Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arus P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008b) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745–756

    Google Scholar 

  • Zhu LH, Li XY, Ahlman A, Welander M (2003) The rooting ability of the dwarfing pear rootstock BP10030 (Pyrus communis) was significantly increased by introduction of the rolB gene. Plant Sci 165:829–835

    CAS  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (1994) Domestication of plants in the old world, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Aranzana Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aranzana, M.J., Eduardo, I., Vilanova, S., Romero, C., Martín-Hernández, A.M. (2012). Genomics of Temperate Fruit Trees. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_6

Download citation

Publish with us

Policies and ethics