Skip to main content

Gene Flow, Spatial Structure, Local Adaptation, and Assisted Migration in Trees

  • Chapter
  • First Online:

Abstract

Gene flow is a process of transferring and exchanging genetic material among groups of organisms and is an important evolutionary factor that greatly affects genetic variation and differentiation in trees. Gene flow within and among populations of forest trees plays an important role in forest tree improvement, conservation genetics, and containment of genetically modified trees (GM trees). Although trees are a very diverse group of woody plants, they share many common life traits that affect gene flow, which we discuss in this review. Some unfavorable processes in current forest tree ecosystems, such as habitat loss and fragmentation, increased environmental stress due to global climate change, introgression from domesticated trees into their wild relatives, introduction of maladapted germplasm during reforestation, etc., may badly affect naturally established balance between gene flow, isolation, and local adaptation. Therefore, estimation of gene flow becomes increasingly important for monitoring these processes and developing the best possible strategy to manage and protect forest ecosystems. Here, we review what has been done in this area recently and the methods and approaches currently used to measure gene flow in forest tree populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams WT, Birkes DS (1991) Estimating mating patterns in forest tree populations. In: Fineschi S, Malvoti ME, Cannata F, Hattemer HH (eds) Biochemical markers in the population genetics of forest tree. SPB Academic Publishing, The Hague, pp 157–172

    Google Scholar 

  • Adams WT, Burczyk J (2000) Magnitude and implications of gene flow in gene conservation reserves. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 215–224

    Google Scholar 

  • Adams WT, Hipkins VD, Burczyk J, Randall WK (1997) Pollen contamination trends in a maturing Douglas-fir seed orchards. Can J For Res 27:131–134

    Google Scholar 

  • Ahmed S, Compton SG, Butlin RK, Gilmartin PM (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc Natl Acad Sci USA 106:20342–20347

    PubMed  CAS  Google Scholar 

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees 23:1125–1135

    CAS  Google Scholar 

  • Ahuja MR (2011) Fate of transgenes in the forest tree genome. Tree Genet Genomes 7:221–230

    Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree population. Evol Appl 1:95–111

    Google Scholar 

  • Alleaume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol 19:203–215

    PubMed  CAS  Google Scholar 

  • Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, Oxford

    Google Scholar 

  • Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161

    CAS  Google Scholar 

  • Austerlitz F, Smouse PE (2001) Two-generation analysis of pollen flow across a landscape. II. Relation between Φ FT , pollen dispersal and interfemale distance. Genetics 157:851–857

    PubMed  CAS  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    PubMed  CAS  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954

    PubMed  Google Scholar 

  • Ayele TB, Gailing O, Umer M, Finkeldey R (2009) Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) JF Gmel. in Ethiopia. Plant Syst Evol 280:175–185

    CAS  Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    PubMed  Google Scholar 

  • Bagnoli F, Fady B, Fineschi S, Oddou-Muratorio S, Piotti A, Sebastiani F, Vendramin GG (2011) Neutral patterns of genetic variation and applications to conservation in conifer species. Chapter 4. In: Plomion C, Bousquet J, Kole C (eds) Genetics, genomics and breeding of conifers. CRC Press/Science Publishers, Inc., Enfield, pp 141–195

    Google Scholar 

  • Bai WN, Zeng YF, Zhang DY (2007) Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytol 176:699–707

    PubMed  Google Scholar 

  • Barton NH (1993) The probability of fixation of a favoured allele in a subdivided population. Genet Res 62:149–158

    Google Scholar 

  • Beaulieu J, Perron M, Bousquet J (2004) Multivariate patterns of adaptive genetic variation and seed source transfer in black spruce. Can J For Res 34:531–545

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    PubMed  CAS  Google Scholar 

  • Berry O, Tocher M, Sarre S (2004) Can assignment tests measure dispersal? Mol Ecol 13: 551–561

    PubMed  CAS  Google Scholar 

  • Bohrerova Z, Bohrer G, Cho KD, Bolch MA, Linden KG (2009) Determining the viability response of pine pollen to atmospheric conditions during long-distance dispersal. Ecol Appl 19:656–667

    PubMed  Google Scholar 

  • Bossuyt B (2007) Genetic rescue in an isolated metapopulation of a naturally fragmented plant species, Parnassia palustris. Conserv Biol 21:832–841

    PubMed  Google Scholar 

  • Broquet T, Petit E (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 20:193–216

    Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100

    Google Scholar 

  • Burczyk J, Chybicki IJ (2004) Cautions on direct gene flow estimation in plant populations. Evolution 58:956–963

    PubMed  Google Scholar 

  • Burczyk J, Adams WT, Shimizu JY (1996) Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuate Lemmon) stand. Heredity 77:251–260

    Google Scholar 

  • Burczyk J, Adams WT, Birkes DS, Chybicki IJ (2006) Using genetic markers to directly estimate gene flow and reproductive success parameters in plants based on naturally regenerated seedlings. Genetics 173:363–372

    PubMed  CAS  Google Scholar 

  • Burdon RD, Wilcox PL (2011) Integration of molecular markers in breeding. Chapter 7. In: Plomion C, Bousquet J, Kole C (eds) Genetics, genomics and breeding of conifers. CRC Press/Science Publishers, Inc., Enfield, pp 276–322

    Google Scholar 

  • Burger R, Gimelfarb A (2002) Fluctuating environments and the role of mutation in maintaining quantitative genetic variation. Genet Res Camb 80:31–46

    CAS  Google Scholar 

  • Campbell RK (1979) Genecology of Douglas-fir in a watershed in the Oregon cascades. Ecology 60:1036–1050

    Google Scholar 

  • Campbell ID, McDonald K, Flannigan MD, Kringayark J (1999) Long-distance transport of pollen into the Arctic. Nature 399:29–30

    CAS  Google Scholar 

  • Cannon CH, Morley RJ, Bush ABG (2009) The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Natl Acad Sci USA 106:11188–11193

    PubMed  CAS  Google Scholar 

  • Cao C-P, Gailing O, Siregar I, Siregar U, Finkeldey R (2009) Genetic variation in nine Shorea species (Dipterocarpaceae) in Indonesia revealed by AFLPs. Tree Genet Genomes 5:407–420

    Google Scholar 

  • Cavers S, Navarro C, Lowe AJ (2003) Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Mol Ecol 12:1451–1460

    PubMed  CAS  Google Scholar 

  • Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphisms genotyping in plants. Chapter 5. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association mapping in plants. Springer, New York, pp 77–94

    Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Google Scholar 

  • Cheliak WM, Pitel JA (1984) Techniques for starch gel electrophoresis of enzymes from forest tree species. Report PI-X-42. Petawawa National Forest Institute, Ontario

    Google Scholar 

  • Chybicki IJ, Burczyk J (2010b) Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Mol Ecol 19:2137–2151

    PubMed  CAS  Google Scholar 

  • Chybicki I, Trojankiewicz M, Oleksa A, Dzialuk A, Burczyk J (2009) Isolation-by-distance within naturally established populations of European beech (Fagus sylvatica). Botany 87:791–798

    Google Scholar 

  • Colinvaux PA, De Oliveira PE (2001) Amazon plant diversity and climate through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:51–63

    Google Scholar 

  • Compton SG, Ellwood MDF, Davis AJ, Welch K (2000) The flight heights of chalcid wasps (Hymenoptera, Chalcidoidea) in a lowland Bornean rain forest: fig wasps are the high fliers. Biotropica 32:515–522

    Google Scholar 

  • Conkle MT, Hodgskinss P, Nunnally L, Hunter S (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. General technical report PSW-64. U.S. Forest Service, Washington, DC

    Google Scholar 

  • Corner EJH (1954) The evolution of tropical trees. In: Huxley J, Hardy AC, Ford EC (eds) Evolution as a process. Allen & Unwin, London, pp 34–46

    Google Scholar 

  • Craft KJ, Ashley MV (2010) Pollen-mediated gene flow in isolated and continuous stands of bur oak, Quercus macrocarpa (Fagaceae). Am J Bot 97:1999–2006

    PubMed  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    PubMed  CAS  Google Scholar 

  • Crawford TJ (1984) The estimation of neighbourhood parameters for plant populations. Heredity 52:273–283

    Google Scholar 

  • Crispo E (2008) Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J Evol Biol 21:1460–1469

    PubMed  CAS  Google Scholar 

  • Curtu A-L, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evol Biol 9:284. doi:10.1186/1471-2148-9-284

    PubMed  Google Scholar 

  • Davis MB, Shaw R (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679

    PubMed  CAS  Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographic range resulting from greenhouse warming: effects on biodiversity in forests. In: Peters RL, Lovejoy TE (eds) Global warming and biodiversity. Yale University Press, New Haven, pp 297–308

    Google Scholar 

  • De Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, Macaya-Sanz D, Cottrell J, Heinze B, Schanzer I, Lexer C (2010) Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol Ecol 19:1638–1650

    Google Scholar 

  • Dean JFD (2006) Genomics resources for conifers. Chapter 4. In: Williams CG (ed) Landscapes, genomics and transgenic conifers, vol 9, Section II, Managing forest ecosystems. Springer, Dordrecht, pp 55–74

    Google Scholar 

  • Delsenya M, Han B, Hsing YI (2010) High throughput DNA sequencing: the new sequencing revolution. Plant Sci 179:407–422

    Google Scholar 

  • Derero A, Gailing O, Finkeldey R (2011) Maintenance of genetic diversity in Cordia africana Lam., a declining forest tree species in Ethiopia. Tree Genet Genomes 7(1):1–9. doi:10.1007/s11295-010-0310-1

    Google Scholar 

  • Devlin B, Ellstrand NC (1990) The development and application of a refined method for estimating gene flow from angiosperm paternity analysis. Evolution 44:248–259

    Google Scholar 

  • DeWoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957

    CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764

    PubMed  Google Scholar 

  • Dick CW, Jones FA, Hardy OJ, Petit R (2008a) Spatial scales of seed and pollen-mediated gene flow in tropical forest trees. Trop Plant Biol 1:20–33

    Google Scholar 

  • Dick CW, Hardy OJ, Jones FA, Petit R (2008b) Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Springer, New York

    Google Scholar 

  • DiFazio SP, Slavov G, Burczyk J, Leonardi S, Strauss SH (2004) Gene flow from tree plantations and implications for transgenic risk assessment. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Trivandrum, pp 405–422

    Google Scholar 

  • Di-Giovanni F, Kevan PG, Arnold J (1996) Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario. Can For Ecol Manage 83:87–97

    Google Scholar 

  • Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:120–132

    Google Scholar 

  • Dow BD, Ashley MV (1998a) Factors influencing male mating success in bur oak, Quercus macrocarpa. Springer, Dordrecht

    Google Scholar 

  • Dow BD, Ashley MV (1998b) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J Hered 89:62–70

    Google Scholar 

  • Dutech C, Sork VL, Irwin AJ, Smouse PE, Davis FW (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). Am J Bot 92:252–261

    PubMed  CAS  Google Scholar 

  • Eckenwalder JE (1984) Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. III. Paleobotany and evolution. Can J Bot 62:336–342

    Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5:225–234

    Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    PubMed  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15. doi:10.1038/hdy.2010.152

    PubMed  CAS  Google Scholar 

  • El-Kassaby YA, White EE (1985) Isozymes and forest trees: an annotated bibliography. Canadian Forest Service Information Report BC-X-267, p 79

    Google Scholar 

  • Ellstrand NC (1992a) Gene flow among seed plant populations. New Forests 6:241–245

    Google Scholar 

  • Ellstrand NC (1992b) Gene flow by pollen: implications for plant conservation genetics. Oikos 63:77–86

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Google Scholar 

  • Epperson BK (2003) Geographical genetics. Princeton University Press, Princeton/Oxford

    Google Scholar 

  • Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction, 2nd edn. Springer, New York

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genet Genomes 3:119–133

    Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    PubMed  Google Scholar 

  • Fedorov AA (1966) The structure of the tropical rain forest and speciation in the humid tropics. J Ecol 54:1–11

    Google Scholar 

  • Finkeldey R (1995) Homogeneity of pollen allele frequencies of single seed trees in Picea abies (L.) Karst. plantations. Heredity 74:451–463

    Google Scholar 

  • Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. For Ecol Manage 197:231–244

    Google Scholar 

  • Finkeldey R, Leinemann L, Gailing O (2010) Molecular genetic tools to infer the origin of forest plants and wood. Appl Microbiol Biotechnol 85:1251–1258

    PubMed  CAS  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary, ecological perspective. Sinauer, Sunderland, pp 135–150

    Google Scholar 

  • Futschik A, Schlötterer C (2010) The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186:207–218

    PubMed  CAS  Google Scholar 

  • Gailing O, Wachter H, Schmitt H-P, Curtu A-L, Finkeldey R (2007) Characterization of different provenances of Slavonian pedunculate oaks (Quercus robur L.) in Münsterland (Germany) with chloroplast DNA markers: PCR-RFLPs and chloroplast microsatellites. Allg Forst Jagdztg 178:85–90

    Google Scholar 

  • Garcia-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Google Scholar 

  • Geburek T, Müller F (2005) How can silvicultural management contribute to genetic conservation? In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen, pp 651–669

    Google Scholar 

  • Geng QF, Lian CL, Goto S, Tao JM, Kimura M, Islam MDS, Hogetsu T (2008) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17:4724–4739

    PubMed  CAS  Google Scholar 

  • Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao Y, Tam A, Wang S, Friedmann M, Birol I, Jones SJM, Cronk QCB, Douglas CJ (2011) SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol Ecol Resour 11(suppl 1):81–92

    PubMed  CAS  Google Scholar 

  • Gerard P, Klein EK, Austerlitz F, Fernandez-Manjarres J, Frascaria-Lacoste N (2006) Assortative mating and differential male mating success in an ash hybrid zone population. BMC Evol Biol 6:96. doi:10.1186/1471-2148-6-96

    PubMed  Google Scholar 

  • Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048

    PubMed  CAS  Google Scholar 

  • Gillet EM (ed) (1999) Which DNA marker for which purpose? Final compendium of the research project “Development, optimisation and validation of molecular tools for assessment of biodiversity in forest trees” in the European Union DGXII biotechnology FW IV research programme molecular tools for biodiversity. http://webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm

  • Goldstein DB, Pollock DD (1997) Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. J Heredity 88:335–342

    PubMed  CAS  Google Scholar 

  • Gömöry D, Foffová E, Kmeť J, Longauer R, Romšáková I (2010) Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: adaptation or acclimation? Acta Biol 52(2):42–49

    Google Scholar 

  • González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alía R (2006a) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15:4577–4588

    PubMed  Google Scholar 

  • González-Martínez SC, Krutovsky KV, Neale DB (2006b) Forest tree population genomics and adaptive evolution. New Phytol 170(2):227–238

    PubMed  Google Scholar 

  • González-Martínez SC, Dillon S, Garnier-Géré P, Krutovsky KV, Alía R, Burgarella C, Eckert A, Garcia MR, Grivet D, Heuertz M, Jaramillo-Correa JP, Lascoux M, Neale DB, Savolainen O, Tsumura Y, Vendramin G (2011) Patterns of nucleotide diversity and association mapping. Chapter 6. In: Plomion C, Bousquet J, Kole C (eds) Genetics, genomics and breeding of conifers. CRC Press/Science Publishers, Inc., Enfield, pp 239–275

    Google Scholar 

  • Goto S, Shimatani K, Yoshimaru H, Takahashi Y (2006) Fat-tailed gene flow in the dioecious canopy tree species Fraxinus mandshurica var. japonica revealed by microsatellites. Mol Ecol 15:2985–2996

    PubMed  CAS  Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit – a review. Aust J Bot 36:41–66

    Google Scholar 

  • Grivet D, Robledo-Arnuncio JJ, Smouse PE, Sork VL (2009) Relative contribution of contemporary pollen and seed dispersal to the effective parental size of seedling population of California valley oak (Quercus lobata, Née). Mol Ecol 18:3967–3979

    PubMed  Google Scholar 

  • Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214

    PubMed  CAS  Google Scholar 

  • Guillot G, Estuop A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    PubMed  CAS  Google Scholar 

  • Hadfield JD, Richardson DS, Burke T (2006) Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework. Mol Ecol 15:3715–3730

    PubMed  CAS  Google Scholar 

  • Hall D, Luquez V, Garcia VM, St Onge KR, Jansson D, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European Aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860

    PubMed  Google Scholar 

  • Hamilton MB (1999) Tropical tree gene flow and seed dispersal. Nature 401:129

    CAS  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manage 197:323–335

    Google Scholar 

  • Hamrick JL, Nason JD (2000) Gene flow in forest trees. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 81–90

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6:95–124

    Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495

    Google Scholar 

  • Hannah L, Midgley G, Hughes G, Bomhard B (2005) The view from the cape. Extinction risk, protected areas, and climate change. Bioscience 55:231–242

    Google Scholar 

  • Hardesty BD, Hubbell SP, Bermingham E (2006) Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecol Lett 9:516–525

    PubMed  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier M-H, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    PubMed  CAS  Google Scholar 

  • Haygood R, Ives AR, Andow DA (2004) Population genetics of transgene containment. Ecol Lett 7:213–220

    Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11(suppl 1):123–136

    PubMed  Google Scholar 

  • Henry RJ (2008) Plant genotyping II: SNP technology. Oxford University Press, New York, p 285

    Google Scholar 

  • Heuertz M, Vekemans X, Hausman J-F, Palada M, Hardy OJ (2003) Estimating seed versus pollen dispersal from spatial genetic structure in the common ash. Mol Ecol 12:2483–2495

    PubMed  CAS  Google Scholar 

  • Heuertz M, Teufel J, González-Martínez SC, Soto A, Fady B, Alía R, Vendramin GG (2010) Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    PubMed  CAS  Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    PubMed  CAS  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807

    Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15(12):675–683

    PubMed  CAS  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Google Scholar 

  • Hunter ML Jr (2007) Climate change and moving species: furthering the debate on assisted colonization. Conserv Biol 21:1356–1358

    PubMed  Google Scholar 

  • Ingvarsson PK (2010) Nucleotide polymorphism, linkage disequilibrium and complex trait dissection in Populus. In: Jansson S, Bhalerao R, Groover AT (eds) Genetics and genomics of Populus. Springer, New York, pp 91–112

    Google Scholar 

  • Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manage 155:205–222

    Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004a) How fast and far might tree species migrate in the eastern United States due to climate change? Global Ecol Biogeogr 13:209–219

    Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004b) Potential colonization of newly available ­tree-species habitat under climate change: an analysis for five eastern US species. Landsc Ecol 19:787–799

    Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    PubMed  Google Scholar 

  • Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51

    Google Scholar 

  • Janzen DH (1986) The future of tropical ecology. Annu Rev Ecol Syst 17:305–324

    Google Scholar 

  • Jech K, Wheeler N (1984) Laboratory manual for horizontal starch gel electrophoresis. Weyerhaeuser technical report 050-3210/7, 61 pp

    Google Scholar 

  • Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). J Evol Biol 18:619–628

    PubMed  CAS  Google Scholar 

  • Johnsen Ø, Daehlen OG, Østreng G, Skrøppa T (2005) Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol 168:589–596

    PubMed  Google Scholar 

  • Johnsen Ø, Kvaalen H, Yakovlev I, Dæhlen OG, Fossdal CG, Skrøppa T (2009) An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness from the laboratory to the field. CABI, Oxfordshire, pp 99–107

    Google Scholar 

  • Johnson KL, Raybould AF, Hudson MD, Poppy GM (2006) How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci 12:1–5

    PubMed  Google Scholar 

  • Johnsson H (1945) Interspecific hybridization within the genus Betula. Hereditas 31:163–176

    PubMed  CAS  Google Scholar 

  • Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Mol Ecol 16:697–707

    PubMed  CAS  Google Scholar 

  • Jones B, Walsh D, Werner L, Fiumera A (2009) Using blocks of linked single nucleotide polymorphisms as highly polymorphic genetic markers for parentage analysis. Mol Ecol Resour 9:487–497

    PubMed  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    PubMed  Google Scholar 

  • Jordano P (2010) Pollen, seeds and genes: the movement ecology of plants. Heredity 105:329–330

    PubMed  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Google Scholar 

  • Kamm U, Rotach P, Gugerli F, Siroky M, Edwards P, Holderegger R (2009) Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity 103:476–482

    PubMed  CAS  Google Scholar 

  • Katul G, Williams CG, Siqueira M, Poggi D, Porporato A, Mccarthy H, Oren R (2006) Dispersal of transgenic conifer pollen. Chapter 8. In: Williams CG (ed) Landscapes, genomics and transgenic conifers, vol 9, Section III, Managing forest ecosystems. Springer, Dordrecht, pp 121–146

    Google Scholar 

  • Kaya N, Isik K, Adams WT (2006) Mating system and pollen contamination in a Pinus brutia seed orchard. New Forests 31(3):409–416

    Google Scholar 

  • Kikuchi A, Watanabe K, Tanaka Y, Kamada H (2008) Recent progress on environmental biosafety assessment of genetically modified trees and floricultural plants in Japan. Plant Biotechnol 25:9–15

    Google Scholar 

  • Klein EK, Lavigne C, Gouyon PH (2006) Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecol 6:3

    PubMed  Google Scholar 

  • Klein EK, Desassis N, Oddou-Muratorio S (2008) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. IV. Whole inter-individual variance of male fecundity estimated jointly with dispersal kernel. Mol Ecol 17:3323–3336

    PubMed  CAS  Google Scholar 

  • Kole C (ed) (2007) Genome mapping and molecular breeding in plants, vol 7: Forest trees. Springer, Berlin/Heidelberg

    Google Scholar 

  • Konnert M, Maurer W (1995) Isozymic investigation on Norway spruce (Picea abies L. Karst.) and European Silver fir (Abies alba Mill.): practical guide to separation methods and zymogram evaluation. German Federal-State Working Group “Conservation of Forest Gene Resources”, 79 pp

    Google Scholar 

  • Konuma A, Tsumura Y, Lee C-T, Lee SL, Okuda T (2000) Estimation of gene flow in the tropical-rainforest tree Neobalanocarpus heimii (Dipterocarpaceae), inferred from paternity analysis. Mol Ecol 9:1843–1852

    PubMed  CAS  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    PubMed  Google Scholar 

  • Krutovskii KV, Bergmann F (1995) Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74:464–480

    CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005a) Nucleotide diversity and linkage disequilibrium in coldhardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041

    PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005b) Forest genomics and new molecular genetic approaches to measuring and conserving adaptive genetic diversity in forest trees. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Zvolen, pp 369–390

    Google Scholar 

  • Kuparinen A (2006) Mechanistic models for wind dispersal. Trends Plant Sci 11:296–301

    PubMed  CAS  Google Scholar 

  • Kvaalen H, Johnson Ø (2008) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  • Lanner RM (1965) Needed: a new approach to the study of pollen dispersion. Silvae Genet 15:50–52

    Google Scholar 

  • LeCorre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164:1205–1219

    CAS  Google Scholar 

  • Ledig FT, Jacob-Cervantes V, Hodgskiss PD, Eguiluz-Piedra T (1997) Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution 51:1815–1827

    Google Scholar 

  • Lee D, Natesan E (2006) Evaluating genetic containment strategies for transgenic plants. Trends Biotechnol 24:109–114

    PubMed  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Google Scholar 

  • Lepoittevin C, Frigerio J-M, Garnier-Géré P, Salin F, Cervera M-T, Vornam B, Harvengt L, Plomion C (2010) In vitro vs in silico detected SNPs for the development of a genotyping array: what can we learn from a non-model species? PLoS One 5(6):e11034. doi:10.1371/journal.pone.0011034

    PubMed  Google Scholar 

  • Lexer C, Fay M, Joseph J, Nica M-S, Heinze B (2005) Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057

    PubMed  CAS  Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Comment: shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012

    PubMed  CAS  Google Scholar 

  • Lindgren D, Paule L, Xihuan S, Yazdani R, Segerström U, Wallin J-E, Lejdebro ML (1995) Can viable pollen carry Scots pine genes over long distances? Grana 34:64–69

    Google Scholar 

  • Lopez S, Rousset F, Shaw FH, Shaw RG, Ronce O (2008) Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapes. J Evol Biol 21:293–309

    Google Scholar 

  • Lörz H, Wenzel G (eds) (2004) Biotechnology in agriculture and forestry: molecular marker systems, vol 55. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Lourmas M, Kjellberg F, Dessard H, Joly HI, Chevallier M (2007) Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 99:151–160

    PubMed  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    PubMed  CAS  Google Scholar 

  • Malécot G (1948) Les mathématiques de l´héredité. Masson, Paris

    Google Scholar 

  • Manchenko G (2003) Handbook of detection of enzymes on electrophoretic gels, 2nd edn. CRC Press, New York, 554 p

    Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignments methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    PubMed  CAS  Google Scholar 

  • Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    PubMed  CAS  Google Scholar 

  • Matyas C (1994) Modelling climate change effects with provenance test data. Tree Physiol 14:797–804

    PubMed  Google Scholar 

  • Matyas C (2005) Expected climate instability and its consequences for conservation of forest genetic resources. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Zvolen

    Google Scholar 

  • Matyas C (2010) Forecasts needed for retreating forests. Nature 464:1271

    PubMed  CAS  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    PubMed  CAS  Google Scholar 

  • McKay HK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    PubMed  Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074

    PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46

    PubMed  CAS  Google Scholar 

  • Mimura M, Aitken SN (2010) Local adaptation at the range peripheries of Sitka spruce. J Evol Biol 23:249–258

    PubMed  CAS  Google Scholar 

  • Mimura M, Barbour RC, Potts BM, Vaillancourt RE, Watanabe KN (2009) Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests. Mol Ecol 18:4180–4192

    PubMed  Google Scholar 

  • Minteer BA, Collins JP (2010) Move it or lose it? The ecological ethics of relocating species under climate change. Ecol Appl 20:1801–1804

    PubMed  Google Scholar 

  • Mitton JB, Williams CG (2006) Gene flow in conifers. Chapter 9. In: Williams CG (ed) Landscapes, genomics and transgenic conifers, vol 9, Section III, Managing forest ecosystems. Springer, Dordrecht, pp 147–168

    Google Scholar 

  • Moran EV, Clark JS (2011) Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data. Mol Ecol 20:1248–1262

    PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    PubMed  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    PubMed  CAS  Google Scholar 

  • Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    PubMed  CAS  Google Scholar 

  • Muir G, Schlötterer C (2006) Comment: moving beyond single-locus studies to characterize hybridization between oaks (Quercus spp.). Mol Ecol 15:2301–2304

    PubMed  CAS  Google Scholar 

  • Müller-Starck G (1977) Cross-fertilization in a conifer stand inferred from enzyme gene-markers in seeds. Silvae Genet 26:223–226

    Google Scholar 

  • Murawski D, Hamrick J (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67:167–174

    Google Scholar 

  • Mutke S, Gordo J, Chambel MR, Prada MA, Álvarez D, Iglesias S, Gil L (2010) Phenotypic plasticity is stronger than adaptative differentiation among Mediterranean stone pine provenances. For Syst 19(3):354–366

    Google Scholar 

  • Namkoong G, Koshy MP (2001) Application of genetic markers to forest tree species. Draft report to IPGRI of the project “Developing decision-making strategies on priorities for conservation and use of forest genetic resources”, 26 p

    Google Scholar 

  • Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687

    CAS  Google Scholar 

  • Nathan R, Casagrandi R (2004) A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J Ecol 92:733–746

    Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    PubMed  CAS  Google Scholar 

  • Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128

    Google Scholar 

  • Ng KKS, Lee SL, Koh CL (2004) Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Mol Ecol 13:657–669

    PubMed  Google Scholar 

  • Oddou-Muratorio S, Klein E (2008) Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol 17:2743–2754

    PubMed  Google Scholar 

  • Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 14:4441–4452

    PubMed  CAS  Google Scholar 

  • Oline DK, Mitton JB, Grant MC (2000) Population and subspecific genetic differentiation in the Foxtail pine (Pinus balfouriana). Evolution 54:1813–1819

    PubMed  CAS  Google Scholar 

  • O’Neill GA, Ukrainetz NK, Carlson MR, Cartwright CV, Jaquish BC, King JN, Krakowski J, Russell JH, Stoehr MU, Xie C, Yanchuk AD (2008) Assisted migration to address climate change in British Columbia: recommendations for interim seed transfer standards. Technical report 048. British Columbia Ministry of Forests and Range, Research Branch, Victoria. www.for.gov.bc.ca/hfd/pubs/Docs/Tr/Tr048.htm

  • Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:17

    Google Scholar 

  • Penaloza-Ramirez JM, Gonzalez-Rodriguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot Lond 105:389–399

    Google Scholar 

  • Peterson AT, Sanchez-Cordero V, Martinez-Meyer E, Navarro-Siguenza AG (2006) Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecol Model 195:229–236

    Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Google Scholar 

  • Petit R, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl U, van Dam B, Deans D, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002a) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

    Google Scholar 

  • Petit R, Csaikl U, Bordács S, Burg K, Coart E, Cottrell J, van Dam B, Deans D, Dumolin-Lapègue S, Fineschi S, Finkeldey R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Olalde M, Pemonge M-H, Popescu F, Slade D, Tabbener H, Taurchini D, de Vries SGM, Ziegenhagen B, Kremer A (2002b) Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manage 156:5–26

    Google Scholar 

  • Petit R, Aguinagalde I, Beaulieu J, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    PubMed  CAS  Google Scholar 

  • Petit RJ, Bodencs C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    CAS  Google Scholar 

  • Pijut PM, Woeste KE, Vengadesan G, Michler CH (2007) Technological advances in temperate hardwood tree improvement including breeding and molecular marker applications. In Vitro Cell Dev Plant 43:283–303

    CAS  Google Scholar 

  • Pluess AR, Sork VL, Dolan B, Davis FW, Grivet D, Merg K, Papp J, Smouse PE (2009) Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). For Ecol Manage 258:735–744

    Google Scholar 

  • Potts BM, Barbour RC, Hingston AB, Vaillancourt RE (2003) Genetic pollution of native eucalyptus gene pools – identifying the risks. Aust J Bot 51:1–25

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pyhäjärvi T, Kujala ST, Savolainen O (2011) Revisiting protein heterozygosity in plants – ­nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris. Tree Genet Genomes 7(2):385–397. doi:10.1007/s11295-010-0340-8

    Google Scholar 

  • Rehfeldt GE, Jaquish BC (2010) Ecological impacts and management strategies for western larch in the face of climate-change. Mitig Adapt Strateg Global Change 15:283–306

    Google Scholar 

  • Rehfeldt GE, Cheng CY, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol Monogr 69:375–407

    Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929

    Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in annual sunflowers facilitated by hybridization. Science 301:1211–1216

    PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ (2011) Wind pollination over mesoscale distances: an investigation with Scots pine. New Phytol 190:222–233

    Google Scholar 

  • Robledo-Arnuncio JJ, García C (2007) Estimation of the seed dispersal kernel from exact identification of source plants. Mol Ecol 16:5098–5109

    PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total exclusion paternity analysis. Heredity 94:13–22

    PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Rousset F (2010) Isolation by distance in a continuous population under stochastic demographic fluctuations. J Evol Biol 23:53–71

    PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2006) A new method of estimating the pollen dispersal curve independently of effective density. Genetics 173:1033–1045

    PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, González-Martínez SC, Smouse PE (2010) Theoretical and practical considerations of gene flow. In: El-Kassaby YA (ed) Forests and genetically modified trees. FAO, Rome, pp 147–162

    Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Google Scholar 

  • Rushton BS (1993) Natural hybridization within the genus Quercus L. Ann Sci For 50(Supl 1):73s–90s

    PubMed  CAS  Google Scholar 

  • Sambatti JBM, Rice KJ (2006) Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution 60:696–710

    PubMed  Google Scholar 

  • Savolainen O, Bokma F, García-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For Ecol Manage 197:79–89

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Syst 38:595–619

    Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    PubMed  Google Scholar 

  • Schoen DL, Reichman JR, Ellstrand NC (2008) Transgene escape monitoring, population genetics, and the law. Bioscience 58:71–77

    Google Scholar 

  • Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11(suppl 1):1–8

    PubMed  Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Shirey PD, Lamberti GA (2010) Assisted colonization under the U.S. Endangered Species Act. Conserv Lett 3:45–52

    Google Scholar 

  • Skrøppa T, Tollefsrud MM, Sperisen C, Johnsen Ø (2009) Rapid change in adaptive performance from one generation to the next in Picea abies – Central European trees in a Nordic environment. Tree Genet Genomes 6:93–99

    Google Scholar 

  • Slatkin M (1976) The rate of spread of an advantageous allele in a subdivided population. In: Karlin S, Nevo E (eds) Population genetics and ecology. Academic Press, New York, pp 767–780

    Google Scholar 

  • Slatkin M (1981) Estimating levels of gene flow in natural populations. Genetics 99:323–333

    PubMed  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annual Review of Ecology and Systematics 16:393–430

    PubMed  CAS  Google Scholar 

  • Slavov GT, Howe GT, Adams WT (2005a) Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can J For Res 35(7):1592–1603

    CAS  Google Scholar 

  • Slavov GT, Howe GT, Gyaourova AV, Birkes DS, Adams WT (2005b) Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping. Mol Ecol 14:3109–3121

    PubMed  CAS  Google Scholar 

  • Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, DiFazio SP (2009) Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 18:357–373

    PubMed  CAS  Google Scholar 

  • Smith DB, Adams WT (1983) Measuring pollen contamination in clonal seed orchards with the aid of genetic markers. In: Proceedings of the 17th southern forest tree improvement conference, Athens, Georgia, USA, 6–9 June 1983, pp 69–77. http://www.rngr.net/publications/tree-improvement-proceedings/sftic/1983

  • Smouse PE, Sork VL (2004) Measuring pollen flow in forest trees: an exposition of alternative approaches. For Ecol Manage 197:21–38

    Google Scholar 

  • Smouse PE, Meagher T, Kobak C (1999) Parentage analysis in Chamaelirium luteum (L.) Gray (Liliaceae): why do some males have higher reproductive contributions? J Evol Biol 12:1069–1077

    Google Scholar 

  • Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271

    PubMed  CAS  Google Scholar 

  • Smulders MJM, Cobben MMP, Arens P, Verboom J (2009) Landscape genetics of fragmented forests: anticipating climate change by facilitating migration. iForest 2:128–132

    Google Scholar 

  • Sork VL, Campbell D, Dyer R, Fernandez J, Nason J, Petit R, Smouse P, Steinberg E (1998) Proceedings from a workshop on gene flow in fragmented, managed, and continuous populations. Research paper no. 3. National Center for Ecological Analysis and Synthesis, Santa Barbara. http://www.nceas.ucsb.edu/projects/2057

  • Sork VL, Nason J, Campbell DR, Fernandez J (1999) Landscape approaches to contemporary gene flow in plants. Trends Ecol Evol 14:219–224

    PubMed  Google Scholar 

  • St. Clair JB, Howe GT (2009) Genetic options for adapting forests to climate change. West Forester 54:9–11

    Google Scholar 

  • Stacy EA, Hamrick JL, Nason JD, Hubbell SP, Foster RB, Condit R (1996) Pollen dispersal in low-density populations of three neotropical tree species. Am Nat 148:275–298

    Google Scholar 

  • Stefenon VM, Gailing O, Finkeldey R (2008) The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia. Plant Biol 10:356–364

    PubMed  CAS  Google Scholar 

  • Takahata N (1991) Genealogy of neutral genes and spreading of selected mutations in a geographically structured population. Genetics 129:585–595

    PubMed  CAS  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2005) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 16:330–342

    Google Scholar 

  • Tautz D, Ellegren H, Weigel D (2010) Next generation molecular ecology. Mol Ecol 19:1–3

    PubMed  Google Scholar 

  • Teeter KC, Payseur BA, Harris LW, Bakewell MA, Thibodeau LM, O’Brien JE et al (2008) Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res 18:67–76

    PubMed  CAS  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, Hoboken

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld A, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    PubMed  CAS  Google Scholar 

  • Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can J For Res 34:1163–1180

    Google Scholar 

  • van Kleunen M, Burczyk J (2008) Estimating selection on floral traits through male fertility in a large natural population of Mimulus guttatus. Evol Ecol 22:39–54

    Google Scholar 

  • Varis S, Pakkanen A, Galofré A, Pulkkinen P (2009) The extent of south-north pollen transfer in Finnish Scots pine. Silva Fenn 43:717–726

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    PubMed  CAS  Google Scholar 

  • Viera MF, de Carvalho-Okano RM (1996) Pollination biology of Mabea fistulifera (Euphorbiaceae) in Southeastern Brazil. Biotropica 28:61–68

    Google Scholar 

  • Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143:18–27

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Wang JL (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    PubMed  Google Scholar 

  • Wang XR, Szmidt AE (2001) Molecular markers in population genetics of forest trees. Scand J For Res 16:199–220

    Google Scholar 

  • Wang T, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20:153–163

    PubMed  CAS  Google Scholar 

  • Wheeler NC, Guries RP (1987) A quantitative measure of introgression between lodgepole and jack pines. Can J Bot 65:1876–1885

    Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Oxfordshire

    Google Scholar 

  • Whitlock MC (2003) Fixation probability and time in subdivided populations. Genetics 164:767–779

    PubMed  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST  ≠  1/(4Nm  +  1). Heredity 82:117–125

    PubMed  Google Scholar 

  • Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci USA 88:2540–2544

    PubMed  CAS  Google Scholar 

  • Willi Y, Buskirk JV (2005) Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. Proc R Soc B 272:1333–1338

    PubMed  Google Scholar 

  • Williams CG, LaDeau SL, Oren R, Katul GG (2006) Modeling seed dispersal distances: implications for transgenic Pinus taeda. Ecological Applications 16:117–124

    PubMed  CAS  Google Scholar 

  • Williams CG (2010) Long-distance pine pollen still germinates after mesoscale dispersal. American Journal of Botany 97:846–855

    PubMed  CAS  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • Woodall CW, Nowak DJ, Liknes GC, Westfall JA (2010) Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For Ecol Manage 259:1447–1454

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59

    PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187(4):1154–1169

    PubMed  CAS  Google Scholar 

  • Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc R Soc B 273:1587–1593

    PubMed  CAS  Google Scholar 

  • Ziegenhagen B, Fladung M (2004) DNA markers for identification and evaluation of genetic resources in forest trees: case studies in Abies, Picea and Populus. In: Lörz H, Wenzel G (eds) Biotechnology in agriculture and forestry: molecular marker systems, vol 55. Springer, Berlin/Heidelberg/New York, pp 413–429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Krutovsky Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krutovsky, K.V., Burczyk, J., Chybicki, I., Finkeldey, R., Pyhäjärvi, T., Robledo-Arnuncio, J.J. (2012). Gene Flow, Spatial Structure, Local Adaptation, and Assisted Migration in Trees. In: Schnell, R., Priyadarshan, P. (eds) Genomics of Tree Crops. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0920-5_4

Download citation

Publish with us

Policies and ethics