Skip to main content

Radioactive Iodine Therapy

  • Chapter
  • First Online:
Book cover Thyroid Cancer

Part of the book series: Endocrine Updates ((ENDO,volume 32))

  • 1824 Accesses

Abstract

Radioactive iodine (RAI; I-131) has been used to destroy thyroid ­carcinoma tissue postoperatively in patients with and without known residual disease since the mid-twentieth century. By eliminating remaining normal thyroid tissue, RAI ablation facilitates monitoring for persistent or recurrent thyroid carcinoma with thyroglobulin levels and iodine scans. Furthermore, for those patients with invasive cancers, extensive locoregional or distant metastases, many studies demonstrate that RAI treatment improves cause-specific and disease-free survival, but there are many challenges in the thyroid cancer literature to evaluating the benefits of RAI remnant ablation. There is a lack of prospective randomized controlled trials to identify effectiveness of RAI. Moreover, the use of as many as 16 staging systems, pooling of histological subtypes that respond differently to iodine, and lack of agreement of definitions for “low risk” versus “high risk” make it difficult to compare the outcomes for different stages/risks from across studies. In addition, the majority of analyses do not account for ethnic and geographic differences in total incidence and incidence of different histological types of differentiated thyroid cancer (DTC). Furthermore, since recurrence and death from thyroid cancer can be seen many years after the initial diagnosis, attaining significant outcome data depends upon the duration of a study which is, oftentimes, too short to provide meaningful data. Lastly, recent studies use newer methods for detecting recurrence of disease such as with more sensitive thyroglobulin assays and high-resolution ultrasound, making it difficult to compare ­outcomes from older studies where less sensitive whole-body scanning was performed.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. CA Cancer J Clin. 1990;40:299–317.

    CAS  PubMed  Google Scholar 

  2. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229–42.

    PubMed  Google Scholar 

  3. Sawka AM, Thabane L, Browman G, Gerstein HC. A systematic review and meta-analysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.

    CAS  PubMed  Google Scholar 

  4. Mazzaferri E. A randomized trial of remnant ­ablation – in search of an impossible dream? J Clin Endocrinol Metab. 2004;89:3662–4.

    CAS  PubMed  Google Scholar 

  5. Lang BH, Lo CY, Chan WF, Lam KY, Wan KY. Staging systems for papillary thyroid carcinoma: a review and comparison. Ann Surg. 2007;245:366–78.

    PubMed  Google Scholar 

  6. Chow SM, Law SC, Mendenhall WMAuSK, Chan PT, Leung TW, Tong CC, et al. Papillary thyroid carcinoma: prognostic factors and the role of radioiodine and external radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52:784–95.

    PubMed  Google Scholar 

  7. Lal G, O’Dorisio T, McDougall R, Weigel RJ. Cancer of the head and neck. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, editors. Abeloff’s clinical oncology. Philadelphia, PA: Churchill Livingstone Elsevier; 2008. p. 148.

    Google Scholar 

  8. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–73.

    CAS  PubMed  Google Scholar 

  9. Torlontano M, Attard M, Crocetti U, Tumino S, Bruno R, Costante G, et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab. 2004;89:3402–7.

    CAS  PubMed  Google Scholar 

  10. Davies L, Welch G. Increasing Incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    CAS  PubMed  Google Scholar 

  11. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–85.

    PubMed  Google Scholar 

  12. Shaha AR. TNM classification of thyroid carcinoma. World J Surg. 2007;31:879–87.

    PubMed  Google Scholar 

  13. Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–8.

    CAS  PubMed  Google Scholar 

  14. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    PubMed  Google Scholar 

  15. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit J, Wiersinga W, et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.

    CAS  PubMed  Google Scholar 

  16. Sawka AM, Brierley JD, Tsang RW, Thabane L, Rotstein L, Gafni A, et al. An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-­differentiated thyroid cancer. Endocrinol Metab Clin N Am. 2008;37:457–80.

    Google Scholar 

  17. Sacks WL, Fung CH, Chang JT, Waxman A, Braunstein GD. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid. 2010;20(11):1235–45.

    CAS  PubMed  Google Scholar 

  18. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.

    CAS  PubMed  Google Scholar 

  19. Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.

    CAS  PubMed  Google Scholar 

  20. McCowen KD, Adler RA, Ghaed N, Verdon T, Hofeldt FD. Low dose radioiodine thyroid ablation in post surgical patients with thyroid cancer. Am J Med. 1976;61:52–8.

    CAS  PubMed  Google Scholar 

  21. Ramacciotti C, Pretorius HT, Line BR, Goldman JM, Robbins J. Ablation of non-malignant thyroid remnants with low doses of radioactive iodine: concise communication. J Nucl Med. 1982;23:483–9.

    CAS  PubMed  Google Scholar 

  22. DeGroot LJ, Reilly M. Comparison of 30 and 50 mCi doses of I-131 for thyroid ablation. Ann Intern Med. 1982;96:51–3.

    CAS  PubMed  Google Scholar 

  23. Maxon HR, Thomas SR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen I-W, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309(16):937–41.

    CAS  PubMed  Google Scholar 

  24. Bal C, Padhy AK, Jana S, Pant GS, Basu AK. Prospective randomized clinical trial to evaluate the optimal dose of 131-I for remnant ablation in patients with differentiated thyroid carcinoma. Cancer. 1996;77(12):2574–80.

    CAS  PubMed  Google Scholar 

  25. Gawkowska-Suwinska M, Turska M, Roskosz J, Puch Z, Jurecka-Tuleja B, Handkiewicz-Junak D, et al. Early evaluation of treatment effectiveness using 131 iodine radiotherapy in patients with differentiated thyroid cancer. Wiad Lek. 2001;54:278–88.

    PubMed  Google Scholar 

  26. Bal CS, Kumar A, Pant GS. Radioiodine dose for remnant ablation in differentiated thyroid cancer: a randomized clinical trial in 509 patients. J Clin Endocrinol Metab. 2004;89:1666–73.

    CAS  PubMed  Google Scholar 

  27. Rosario PWS, Reis JS, Barroso AL, Rezende LL, Padrao EL, Fagundes TA. Efficacy of low and high 131-I doses for thyroid remnant ablation in patients with differentiated thyroid carcinoma based on post-operative cervical uptake. Nucl Med Commun. 2004;25(11):1077–81.

    PubMed  Google Scholar 

  28. Hackshaw A, Harmer C, Mallick Ujjal, Haq M, Franklyn JA. 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab. 2007;92:28–38.

    CAS  PubMed  Google Scholar 

  29. Beierwaltes WH, Rabbani R, Dmuchowski C, Lloyd RV, Eyre P, Mallette S. An analysis of “ablation of thyroid remnants” with I-131 in 511 patients from 1947–1984: experience at University of Michigan. J Nucl Med. 1984;25:1287–93.

    CAS  PubMed  Google Scholar 

  30. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    CAS  PubMed  Google Scholar 

  31. Seidlin S, Marinelli L, Oshry E. Radioactive iodine therapy effect on functioning metastases of adenocarcinoma of the thyroid. JAMA. 1946;132:838–47.

    CAS  Google Scholar 

  32. Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.

    CAS  PubMed  Google Scholar 

  33. Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys. 1976;03:253–5.

    CAS  PubMed  Google Scholar 

  34. Krishnamurthy GT, Blahd WH. Radioiodine I-131 therapy in the management of thyroid cancer: a prospective study. Cancer. 1977;40:195–202.

    CAS  PubMed  Google Scholar 

  35. Beierwaltes WH. The treatment of thyroid carcinoma with radioactive iodine. Semin Nucl Med. 1978;8:79–94.

    CAS  PubMed  Google Scholar 

  36. Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA. Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab. 1988;67:501–8.

    CAS  PubMed  Google Scholar 

  37. Simpson WJ, Panzarella T, Carruthers JS, Gospodarowicz MK, Sutcliffe SB. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int J Radiat Oncol Biol Phys. 1988;14:1063–75.

    CAS  PubMed  Google Scholar 

  38. Maxon HR, Smith HS. Radioiodine I-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am. 1990;19:685–718.

    PubMed  Google Scholar 

  39. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    CAS  PubMed  Google Scholar 

  40. Robbins J, Merino MJ, Boice JD, et al. Thyroid ­cancer: a lethal endocrine neoplasm. Ann Intern Med. 1991;115:133–47.

    CAS  PubMed  Google Scholar 

  41. Samaan NA, Schultz PN, Hickey RC, et al. The results of various modalities of treatment of well-differentiated thyroid carcinoma: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75:714–20.

    CAS  PubMed  Google Scholar 

  42. Dulgeroff AJ, Hershman JM. Medical therapy for differentiated thyroid carcinoma. Endocrinol Rev. 1994;15:500–15.

    CAS  Google Scholar 

  43. Menzel C, Grunwald F, Schomburg A, et al. “High dose” radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med. 1996;37:1496–503.

    CAS  PubMed  Google Scholar 

  44. Sisson JC. Practical dosimetry of I-131 in patients with thyroid carcinoma. Cancer Biother Radiopharm. 2002;17:101–5.

    CAS  PubMed  Google Scholar 

  45. Van Nostrund D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–34.

    Google Scholar 

  46. Sgouros G, Kolbert KS, Sheikh A, et al. Patient specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3 dimensional internal dosimetry 3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  47. Doi, Suhail AE, Woodhouse NJ, Thalib L, Onitilo A. Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta analysis revisited. Clin Med Res. 2007;5(2):87–90.

    PubMed Central  PubMed  Google Scholar 

  48. Verberg FA, de Keizer D, Lips CJ, Zelissen PM, de Kierk JM. Prognostic significance of successful ablation with radioiodine of differentiated thyroid cancer patients. Eur J Endocrinol. 2005;152(1):33–7.

    Google Scholar 

  49. Liel Y. Preparation for radioactive iodine administration in differentiated thyroid cancer patients. Clin Endocrinol. 2002;57(4):523–7.

    CAS  Google Scholar 

  50. Serhal DI, Nasrallah MP, Arafah BM. Rapid rise in serum thyrotropin concentrations after thyroidectomy or withdrawal of suppressive thyroxine therapy in preparation for radioactive iodine administration to patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89(7):3285–9.

    CAS  PubMed  Google Scholar 

  51. Leboeuf R, Perro P, Carpentier AC, Verreault J, Langlois MF. Preparation for whole body scintigraphy: a randomized controlled trial. Clin Endocrinol (Oxf). 2007;7(6):839–44.

    Google Scholar 

  52. Goldman JM, Line BR, Aarmodt RL, Robbins J. Influence of triiodothyronine withdrawal time on I-131 uptake postthyroidectomy for thyroid cancer. J Clin Endocrinol Metab. 1980;50(4):734–9.

    CAS  PubMed  Google Scholar 

  53. Silberstein EB, Alavi A, Balon HR, Becker D, Charkes ND, Clarke SEM, Divgi CR, Donohoe KJ, Delbeke D, Goldsmith SJ, Meier DA, Sarkar SD, Waxman AD. Society of nuclear medicine procedure guideline for scintigraphy for differentiated papillary and follicular thyroid cancer. September 5, 2006. http://interactive.snm.org/docs/Scintigraphy%20for%20Differentiated%20Thyroid%20Cancer%20V3%200%20(9-25-06).pdf.

  54. Guimaraes V, DeGroot LJ. Moderate hypothyroidism in preparation for whole body I-131 scintiscans and thyroglobulin testing. Thyroid. 1996;6(2):69–73.

    CAS  PubMed  Google Scholar 

  55. Haugen B, Pacini F, Reiners C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–85.

    CAS  PubMed  Google Scholar 

  56. Robbins RJ, Tuttle RM, Sharaf RN, et al. Preparation by recombinant human thyrotropin or thyroid hormone withdrawal are comparable for the detection of residual differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2001;86:619–25.

    CAS  PubMed  Google Scholar 

  57. Luster M, Lippi F, Jarzab B, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12:49–64.

    CAS  PubMed  Google Scholar 

  58. Robbins RJ, Larson SM, Sinha N, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med. 2002;43:1482–8.

    CAS  PubMed  Google Scholar 

  59. Pacini F, Ladenson PW, Schlumberger M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    CAS  PubMed  Google Scholar 

  60. Barbaro D, Boni G, Meucci G, et al. Radioiodine treatment with 30mCi after recombinant human thyrotropin stimulation in thyroid cancer: effectiveness for postsurgical remnants ablation and possible role of iodine content in l-thyroxine in the outcome of ablation. J Clin Endocrinol Metab. 2003;88:4110–5.

    CAS  PubMed  Google Scholar 

  61. Pacini F, Molinaro E, Castagna MG, Lippi F, Ceccarelli C, Agate L, et al. Ablation of thyroid residues with 30 mCi I-131: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab. 2002;87:4063–8.

    CAS  PubMed  Google Scholar 

  62. Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49(5):764–70.

    PubMed  Google Scholar 

  63. Maxon HR, Thomas SR, Boehringer A, Drilling J, Sperling MI, Sparks JC, et al. Low iodine diet in I-131 ablation of thyroid remnants. Clin Nucl Med. 1983;8:123–6.

    CAS  PubMed  Google Scholar 

  64. Goslings BM. Effect of a low iodine diet on I-131 therapy in follicular thyroid carcinoma. J Endocrinol. 1975;64:30P.

    CAS  PubMed  Google Scholar 

  65. Lakshmanan M, Schaffer A, Robbins J, Reynolds J, Norton J. A simplified low iodine diet in I-131 scanning and therapy of thyroid cancer. Clin Nucl Med. 1988;13:866–8.

    CAS  PubMed  Google Scholar 

  66. Pluijmen MJ, Eustatia-Rutten C, Goslings BM, Stokkel MP, Arias AM, Diamant M, et al. Effects of low-iodine diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2003;58(4):428–35.

    CAS  Google Scholar 

  67. Maruca J, Santner S, Miller K, Santen RJ. Prolonged iodine clearance with a depletion regimen for thyroid carcinoma: concise communication. J Nucl Med. 1984;25(10):1089–93.

    CAS  PubMed  Google Scholar 

  68. Morris LF, Wilder MS, Waxman AD, Braunstein GD. Reevaluation of the impact of a stringent low-iodine diet on ablation rates in radioiodine treatment of thyroid carcinoma. Thyroid. 2001;11:749–55.

    CAS  PubMed  Google Scholar 

  69. Cailleux AF, Baudin E, Travagli JP, Ricard M, Schlumberger M. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J Clin Endocrinol Metab. 2000;85:175–8.

    CAS  PubMed  Google Scholar 

  70. Siddiqui AR, Foley RR, Britton KE, Sibtain A, Plowman N, Grossman AB, et al. The role of I-123 diagnostic imaging in the follow-up of patients with differentiated thyroid carcinoma as compared to I-131 scanning: avoidance of negative therapeutic uptake due to stunning. Clin Endocrinol. 2001;55:515–21.

    Google Scholar 

  71. Mandel SJ, Shankar LK, Benard F, Yamamoto A, Alavi A. Superiority if iodine-123 compared with iodine-131 scanning for thyroid remnants in patients with differentiated thyroid cancer. Clin Nucl Med. 2001;26:6–9.

    CAS  PubMed  Google Scholar 

  72. Sarkar SD, Kalapparambath TP, Palestro CJ. Comparison of I-123 and I-131 for whole body imaging in thyroid cancer. J Nucl Med. 2002;43:632–4.

    PubMed  Google Scholar 

  73. Gerard SK, Cavalieri RR. I-123 diagnostic thyroid tumor whole body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med. 2002;27:1–8.

    PubMed  Google Scholar 

  74. Rawson RW, Rall JE, Peacock W. Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol. 1951;11:1128–42.

    CAS  Google Scholar 

  75. Jeevanram RK, Shah DH, Sharma SM, Ganatra RD. Influence of initial large dose on subsequent uptake of therapeutic radioiodine in thyroid cancer patients. Int J Rad Appl Instrum B. 1986;13:277–9.

    CAS  PubMed  Google Scholar 

  76. Park H, Perkins OW, Edmondson JW, Schnute RB, Manutunga M. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid. 1994;4:49–54.

    CAS  PubMed  Google Scholar 

  77. Chopra S, Wastie ML, Cha S, Vincent RM, Rezeslak A, Perkins AC, et al. Assessment of completeness of thyroid ablation by estimation of neck uptake of I-131 on whole-body scans: comparison of quantification and visual assessment of thyroid bed uptake. Nucl Med Commun. 1996;17:687–91.

    CAS  PubMed  Google Scholar 

  78. Huic D, Medvedec M, Dodig D, Popovic S, Ivancevic D, Pavlinovic Z, et al. Radioiodine uptake in thyroid cancer patients after diagnostic application of low-dose I-131. Nucl Med Commun. 1996;17:839–42.

    CAS  PubMed  Google Scholar 

  79. Park H, Park Y, Zhou X. Detection of thyroid remnant/metastasis without stunning: an ongoing dilemma. Thyroid. 1997;7:277–80.

    CAS  PubMed  Google Scholar 

  80. Morris LF, Waxman AD, Braunstein GD. The nonimpact of thyroid stunning: remnant ablation rates in I-131 scanned and nonscanned individuals. J Clin Endocrinol Metab. 2001;86:3507–11.

    CAS  PubMed  Google Scholar 

  81. McDougall IR. 74 MBq radioiodine I-131 does not prevent uptake on therapeutic doses of I-131 (i.e. it does not cause stunning) in differentiated thyroid cancer. Nucl Med Commun. 1997;18:505–12.

    CAS  PubMed  Google Scholar 

  82. Leger FA, Izembart M, Dagousset F, Barritault L, Baillet G, Chevalier A, et al. Decreased uptake of therapeutic doses of iodine-131 after 185-MBq iodine-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med. 1998;25:242–6.

    CAS  PubMed  Google Scholar 

  83. Kao CH, Yen TC. Stunning effects after a diagnostic dose of iodine-131. Nuklearmedizin. 1998;37:23–5.

    Google Scholar 

  84. Muratet JP, Daver A, Minier JF, Larra F. Influence of scanning doses of iodine-131 on subsequent first ablative treatment outcome in patients operated on for differentiated thyroid carcinoma. J Nucl Med. 1998;39:1546–50.

    CAS  PubMed  Google Scholar 

  85. Cholewinski SP, Yoo KS, Klieger PS, O’Mara RE. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq I-131. J Nucl Med. 2000;41:1198–202.

    CAS  PubMed  Google Scholar 

  86. Medvedec M, Grosev D, Loncarix S, Pavlinovic Z, Dodig D. Thyroid stunning: full quantitative explanation based on radiation absorbed dose analysis [abstract]. Eur J Nucl Med. 2000;27:923.

    Google Scholar 

  87. Comtosis R, Theriault C, Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med. 1993;34:1927–30.

    Google Scholar 

  88. Bajen T, Mane S, Munoz A, Garcia JR. Effect of a diagnostic dose of 185 MBq I-131 on postsurgical thyroid remnants. J Nucl Med. 2000;41:2038–42.

    CAS  PubMed  Google Scholar 

  89. Medvedec M. Seeking a radiobiological explanation for thyroid stunning [letter]. Eur J Nucl Med. 2001;28:393–4.

    CAS  PubMed  Google Scholar 

  90. McMenemin RM, Hilditch TE, Dempsey MF, Reed NS. Thyroid stunning after I-131 diagnostic whole body scanning [letter]. J Nucl Med. 2001;42:986–7.

    CAS  PubMed  Google Scholar 

  91. Postgard P, Himmelman J, Lindencrona U, Bhogal N, Wilberg D, Berg G, et al. Stunning of iodide transport by 131-I irradiation in cultured thyroid epithelial cells. J Nucl Med. 2002;43:828–34.

    CAS  PubMed  Google Scholar 

  92. Sabri O, Zimmy M, Schreckenberger M, Meyer-Oelmann A, Reinartz P, Buell U. Does thyroid stunning exist? A model with benign thyroid disease. Eur J Nucl Med. 2002;27:1591–7.

    Google Scholar 

  93. Gerard SK, Dam HQ. Stunning with I-131 diagnostic whole-body imaging of patients with thyroid cancer. Radiology. 2005;234(3):972–4.

    PubMed  Google Scholar 

  94. Waxman AD, Ramanna L, Chapman N, Brachman M, Tanasescu DE, Berman D, et al. The significance of I-131 scan dose in patients with thyroid cancer: determination of ablation: concise communication. J Nucl Med. 1981;22:861–5.

    CAS  PubMed  Google Scholar 

  95. Schlumberger M, Arcangioli O, Piekerski JD, Tubiana M, Parmentier C. Detection and treatment of lunch metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med. 1988;29:1790–4.

    CAS  PubMed  Google Scholar 

  96. Nemec J, Rohling S, Zamrazil V, Pahunkova D. Comparison of the distribution of diagnostic and thyroablative I-131 in the evaluation of differentiated thyroid cancers. J Nucl Med. 1979;20:92–7.

    CAS  PubMed  Google Scholar 

  97. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.

    CAS  PubMed  Google Scholar 

  98. Donahue KP, Shah NP, Lee SL, Oates ME. Initial staging of differentiated thyroid carcinoma: continued utility of post therapy 131I whole-body scintigraphy. Radiology. 2008;246(3):887–94.

    PubMed  Google Scholar 

  99. Khan S, Waxman AD, Nagaraj N, Braunstein GD. Optimization of post ablative I-131 scintigraphy: comparison of 2 day vs 7 day post therapy study in patients with differentiated thyroid cancer (DTC). J Nucl Med. 1994;35 Suppl 5:15P.

    Google Scholar 

  100. Silberstein EB. Comparison of outcomes after I-123 versus I-131 pre-ablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J Nucl Med. 2007;48(7):1043–6.

    CAS  PubMed  Google Scholar 

  101. Van Nostrand D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid. 2009;19(12):1381–91.

    PubMed  Google Scholar 

  102. Van Nostrand D, Freitas J. Side effects of I-131 for ablation and treatment of well-differentiated thyroid carcinoma. In: Wartofsky L, Van Nostrand D, editors. Thyroid cancer: a comprehensive guide to clinical management. 2nd ed. Totowa, NJ: Humana Press; 2006. p. 459–80.

    Google Scholar 

  103. Schuck A, Biermann M, Pixberg MK, Müller SB, Heinecke A, Schober O, et al. Acute toxicity of adjuvant radiotherapy in locally advanced differentiated thyroid carcinoma. First results of the multicenter study differentiated thyroid carcinoma (MSDS). Strahlenther Onkol. 2003;179:832–9.

    PubMed  Google Scholar 

  104. Kim TH, Yang DS, Jung KY, Kim CY, Choi MS. Value of external irradiation for locally advanced papillary thyroid cancer. Int J Radiat Oncol Biol Phys. 2003;55:1006–12.

    PubMed  Google Scholar 

  105. Klubo-Gwiezdzinska J, Van Nostrand D, Burman KD, Vasko V, Chia S, Deng T, et al. Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010;20(6):1–5.

    Google Scholar 

  106. Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998;39(9):1551–4.

    CAS  PubMed  Google Scholar 

  107. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13(3):265–71.

    CAS  PubMed  Google Scholar 

  108. Solans R, Bosch JA, Galofré P, Porta F, Roselló J, Selva-O’Callagan A, et al. Salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J Nucl Med. 2001;42(5):738–43.

    CAS  PubMed  Google Scholar 

  109. Albrecht HH, Creutzig H. Salivary gland scintigraphy after radioiodine therapy. Functional scintigraphy of the salivary gland after high dose radioiodine therapy. Fortschr Rontgenstr. 1976;125(6):546–51.

    CAS  Google Scholar 

  110. Levenson D, Coulec S, Sonnenberg M, Lai E, Goldsmith SJ, Larson SM. Peripheral facial nerve palsy after high-dose radioiodine therapy in patients with papillary thyroid carcinoma. Ann Intern Med. 1994;120:576–8.

    CAS  PubMed  Google Scholar 

  111. Rall JE, Alpers JB, Lewallen CG, Sonenberg M, Berman M, Rawson RW. Radiation pneumonitis and fibrosis: a complication of radioiodine treatment of pulmonary metastases from cancer of the thyroid. J Clin Endocrinol Metab. 1957;17(11):1263–76.

    CAS  PubMed  Google Scholar 

  112. Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78(916):92–3.

    CAS  PubMed  Google Scholar 

  113. Bal C, Kumar A, Tripathi M, Chandrashekar N, Phom H, Murali NR, et al. High-dose radioiodine treatment for differentiated thyroid carcinoma is not associated with change in female fertility or any genetic risk to the offspring. Int J Radiat Oncol Biol Phys. 2005;63(2):449–55.

    CAS  PubMed  Google Scholar 

  114. Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I-131 therapy for thyroid cancer. Clin Endocrinol. 2002;56:755–8.

    CAS  Google Scholar 

  115. Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, Klingmuller D. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27:503–7.

    CAS  PubMed  Google Scholar 

  116. Pacini F, Gasperi M, Fugazzola L, Ceccarelli C, Lippi F, Centoni R, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35:1418–22.

    CAS  PubMed  Google Scholar 

  117. Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab. 1997;82(11):3637–42.

    CAS  PubMed  Google Scholar 

  118. Holmquest DL, Lake P. Sudden hemorrhage in metastatic thyroid carcinoma of the brain during treatment with iodine-131. J Nucl Med. 1976;17(4):307–9.

    CAS  PubMed  Google Scholar 

  119. Datz FL. Cerebral edema following iodine-131 therapy for thyroid carcinoma metastatic to the brain. J Nucl Med. 1986;27(5):637–40.

    CAS  PubMed  Google Scholar 

  120. Hurley JR, Becker DV. The use of radioiodine in the management of thyroid cancer. In: Freeman LM, Weissmann HS, editors. Nuclear medicine annual. New York: Raven Press; 1983. p. 560–4.

    Google Scholar 

  121. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Chuang SC, Hashibe M, Yu GP, Le AD, Cao W, Hurwitz EL, et al. Radiotherapy for primary thyroid cancer as a risk factor for second primary cancers. Cancer Lett. 2006;238(1):42–52.

    CAS  PubMed  Google Scholar 

  123. Subramanian S, Goldstein DP, Parlea L, Thabane L, Ezzat S, Ibrahim-Zada I, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 2007;17:1277–88.

    PubMed  Google Scholar 

  124. Lazar V, Bidart J-M, Caillou B, Mahe C, Lacroix L, Filetti S, et al. Expression of the Na+/I symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84:3228–34.

    CAS  PubMed  Google Scholar 

  125. Fraker DL, Skarulis M, Livolsi V. Thyroid tumors. In: De Vita VT, Jr HS, Rosenberg SA, editors. Cancer principles and practice of oncology. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 1740–63.

    Google Scholar 

  126. Nakhjavani MK, Gharib H, Goellner JR, van Heerden JA. Metastasis to the thyroid gland: a report of 43 cases. Cancer. 1997;79:574–8.

    CAS  PubMed  Google Scholar 

  127. Lam KY, Lo CY. Metastatic tumors of the thyroid gland: a study of 79 cases in Chinese patients. Arch Pathol Lab Med. 1998;122(1):37–41.

    CAS  PubMed  Google Scholar 

  128. Singh R, Lehl SS, Sachdev A, Handa U, D’Cruz S, Bhalla A. Metastasis to thyroid from lung carcinoma. Indian J Chest Dis Allied Sci. 2003;45:203–4.

    CAS  PubMed  Google Scholar 

  129. Cohen MS, Arslan N, Dehdashti F, Doherty GM, Lairmore TC, Brunt LM, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery. 2001;130:941–6.

    CAS  PubMed  Google Scholar 

  130. Ramos CD, Chisin R, Yeung HW, Larson SM, Macapinlac HA. Incidental focal thyroid uptake on FDG positron emission tomographic scans may represent a second primary tumor. Clin Nucl Med. 2001;26:193–7.

    CAS  PubMed  Google Scholar 

  131. Kang KW, Kim SK, Kang HS, Lee ES, Sim JS, Lee IG, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-flurodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab. 2003;88:4100–4.

    CAS  PubMed  Google Scholar 

  132. Van den Bruel A, Maes A, De Potter T, Mortelmans L, Drijkoningen M, van Damme B, et al. Clinical relevance of thyroid fluorodeoxyglucose-whole body positron emission tomography incidentaloma. J Clin Endocrinol Metab. 2002;87:1517–20.

    PubMed  Google Scholar 

  133. Chen YK, Ding HJ, Chen KT, Chen YL, Liao AC, Shen YY, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18-F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects. Anticancer Res. 2005;25(2B):1421–6.

    PubMed  Google Scholar 

  134. Yi JG, Marom EM, Munden RF, Truong MT, Macapinlac HA, Gladish GW, et al. Focal uptake of fluorodeoxyglucose by the thyroid in patients undergoing initial disease staging with combined PET/CT for non-small cell lung cancer. Radiology. 2005;236:271–5.

    PubMed  Google Scholar 

  135. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK. 18-F-flurodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope. 2005;115(6):1074–8.

    PubMed  Google Scholar 

  136. Choi JY, Lee KS, Kim HJ, Shim YM, Kwon OJ, Park K, et al. Focal thyroid lesions incidentally identified by integrated 18-F-FDG-PET/CT: clinical significance and improved characterization. J Nucl Med. 2006;47(4):609–15.

    PubMed  Google Scholar 

  137. Chu Q, Connor MS, Lilien DL, Johnson LW, Turnage RH, Li BD. Positron emission tomography (PET) positive thyroid incidentaloma: the risk of malignancy observed in a tertiary referral center. Am J Surg. 2006;72(3):272–5.

    Google Scholar 

  138. Eloy JA, Brett EM, Fatterpekar GM, Kostakoglu L, Som PM, Desai SC, et al. The significance and management of incidental [18F]fluorodeoxyglucose–positron-emission tomography uptake in the thyroid gland in patients with cancer. AJNR Am J Neuroradiol. 2009;30:1431–4.

    CAS  PubMed  Google Scholar 

  139. Yasuda S, Shohtsu A, Ide M, Takagi S, Takahashi W, Suzuki Y, et al. Chronic thyroiditis: diffuse uptake of FDG at PET. Radiology. 1998;207(3):775–8.

    CAS  PubMed  Google Scholar 

  140. Grunwald F, Menzel C, Bender H, Palmedo H, Wilkomm P, Ruhlmann J, et al. Comparison of 18-FDG-PET with 131 iodine and 99mTc-Sestamibi scintigraphy in differentiated thyroid carcinoma. Thyroid. 1997;7:327–35.

    CAS  PubMed  Google Scholar 

  141. Fridrich L, Messa C, Landoni C, Lucignani G, Moncayo R, Kendler D, et al. Whole body scintigraphy with 99mTc-MIBI, 18-FDG and 131-I in patients with metastatic thyroid carcinoma. Nucl Med Commun. 1997;18(1):3–9.

    CAS  PubMed  Google Scholar 

  142. Altenvoerde G, Lerch H, Kuwert T, Matheja P, Schafers M, Schober O. Positron emission tomography with 18F-fluorodeoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels and negative iodine scans. Langenbecks Arch Surg. 1998;383:160–3.

    CAS  PubMed  Google Scholar 

  143. Helal BO, Merlet P, Toubert ME, Franc B, Schvartz C, Gauthier-Koelesnikov H, et al. Clinical impact of 18-F FDG-PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med. 2001;42(10):1464–9.

    CAS  PubMed  Google Scholar 

  144. Khan N, Oriuchi N, Higuchi T, Zhang H, Endo K. PET in the follow-up of differentiated thyroid cancer. Br J Radiol. 2003;76(910):690–5.

    CAS  PubMed  Google Scholar 

  145. Yutan E, Clark OH. Hurthle cell carcinoma. Curr Treat Options Oncol. 2001;2(4):331–5.

    CAS  PubMed  Google Scholar 

  146. Yen TC, Lin HD, Lee CH, Chang SL, Yeh SH. The role of technetium-99m sestamibi whole body scans in diagnosing metastatic Hurthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole body scans. Eur J Nucl Med. 1994;21(9):980–3.

    CAS  PubMed  Google Scholar 

  147. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med. 1987;28(5):910–4.

    CAS  PubMed  Google Scholar 

  148. Sisson JC, Ackerman RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-d-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab. 1993;77:1090–4.

    CAS  PubMed  Google Scholar 

  149. Feine U, Leitzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine I-131 iodine uptake in thyroid cancer. J Nucl Med. 1996;37(9):1468–72.

    CAS  PubMed  Google Scholar 

  150. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 flurodeoxyglucose positron emission tomography and iodine-131 whole body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med. 1997;24(11):1342–8.

    CAS  PubMed  Google Scholar 

  151. Feine U. Fluoro-18-deoxyglucose positron emission tomography in differentiated thyroid carcinoma. Eur J Endocrinol. 1998;138(5):492–6.

    CAS  PubMed  Google Scholar 

  152. Grunwald F, Kalicke T, Feine U, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med. 1999;26:1547–52.

    CAS  PubMed  Google Scholar 

  153. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, et al. Value of FDG-PET in papillary thyroid carcinoma with negative 131-I whole body scan. J Nucl Med. 1999;40:986–92.

    CAS  PubMed  Google Scholar 

  154. Wang W, Macapinlac H, Larson SM, Yeh SDJ, Akhurst T, Finn RD, et al. 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131-I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab. 1999;84:2291–302.

    CAS  PubMed  Google Scholar 

  155. Conti PS, Durski JM, Bacqai F, Grafton ST, Singer PA. Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography. Thyroid. 1999;9(8):797–804.

    CAS  PubMed  Google Scholar 

  156. Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus F-18 PET. J Nucl Med. 1999;26:1547–52.

    Google Scholar 

  157. Wang W, Larson SM, Fazzari M, et al. Prognostic value of 18F-fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85:1107–13.

    CAS  PubMed  Google Scholar 

  158. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-F18-fluoro-2-deoxy-d-glucose positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.

    CAS  PubMed  Google Scholar 

  159. Muros MA, Llmas-Elvire JM, Ramirez-Navarro A, et al. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography in differentiated thyroid carcinoma with negative radioiodine scans and elevated serum thyroglobulin levels. Am J Surg. 2000;179:457–61.

    CAS  PubMed  Google Scholar 

  160. Alnafasi NS, Driedger AA, Coates G, Moote DG, Raphael SJ. FDG-PET of recurrent or metastatic I-131 negative papillary thyroid carcinoma. J Nucl Med. 2000;41:1010–5.

    Google Scholar 

  161. Schluter B, Bhuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG-PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131-I scan. J Nucl Med. 2001;42:71–6.

    CAS  PubMed  Google Scholar 

  162. Giammarile F, Hafdi Z, Bournaud C, Janier M, Houzard C, Desuzinges C, et al. Is 18F-2-fluoro-2-deoxy-d-glucose (FDG) scintigraphy with non-dedicated positron emission tomography useful in the diagnostic management of suspected metastatic thyroid carcinoma in patients with no detectable radioiodine uptake? Eur J Endocrinol. 2003;149:293–300.

    CAS  PubMed  Google Scholar 

  163. Yeo JS, Chung JK, So Y, et al. 18F-fluorodeoxyglucose positron emission tomography as presurgical evaluation modality for I-131 scan-negative thyroid carcinoma patients with local recurrence in cervical lymph nodes. Head Neck. 2001;23:94–103.

    CAS  PubMed  Google Scholar 

  164. Shiga T, Tsukamoto E, Nakada K, et al. Comparison of 18F-FDG, 131-I-Na and 201-Tl in diagnosis of recurrent or metastatic thyroid carcinoma. J Nucl Med. 2001;42:414–9.

    CAS  PubMed  Google Scholar 

  165. Frilling A, Teckenborg K, Gorges R, et al. Preoperative diagnostic value of 18F-fluorodeoxyglucose positron emission tomography in patients with radioiodine negative recurrent well differentiated thyroid carcinoma. Ann Surg. 2001;234:804–11.

    CAS  PubMed  Google Scholar 

  166. Helal BO, Merlet P, Toubert ME, et al. Clinical impact of 18-F FDG-PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative I-131 scanning results after therapy. J Nucl Med. 2001;42:1464–9.

    CAS  PubMed  Google Scholar 

  167. Larson SM, Robins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol. 2002;37:169–74.

    PubMed  Google Scholar 

  168. Macapinlac HA. Clinical usefulness of FDG-PET in differentiated thyroid cancer. J Nucl Med. 2001;42(1):77–8.

    CAS  PubMed  Google Scholar 

  169. Moog F, Linke R, Manthey N, et al. Influence of thyroid stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med. 2000;41:1989–95.

    CAS  PubMed  Google Scholar 

  170. Van Tol KM, Jager PL, Piers DA, et al. Better yield of F18-fluorodeoxyglucose positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid. 2002;12:381–7.

    PubMed  Google Scholar 

  171. Petrich Tl, Borner AR, Otto D, Hoffman M, Knapp WH. Influence of rhTSH on F18-fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med. 2002;29:641–7.

    CAS  Google Scholar 

  172. Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of incremental value of recombinant thyrotropin stimulation before 2-F18-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94:1310–6.

    CAS  PubMed  Google Scholar 

  173. Chin BB, Patel P, Cohade C, Ewertz M, et al. Recombinant human thyrotropin stimulation of fluoro-d-glucose positron emission tomography uptake in well-diffferentiated thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:91–5.

    CAS  PubMed  Google Scholar 

  174. Iagaru A, Kalinyak JE, McDougall IR. F-18 FDG-PET/CT in the management of thyroid cancer. Clin Nucl Med. 2007;32:690–5.

    PubMed  Google Scholar 

  175. Bertagna F, Bosio G, Rodella C, et al. F-18 FDG-PET/CT in the evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clin Nucl Med. 2009;34:756–61.

    PubMed  Google Scholar 

  176. Boi F, Lai ML, Desias C, et al. The usefulness of Tc-99m-sestamibi scan in the diagnostic evaluation of thyroid nodules with oncocytic cytology. Eur J Endocrinol. 2003;149:493–8.

    CAS  PubMed  Google Scholar 

  177. Kostoglou-Athanassiou I, Pappas A, Gogou L, et al. Scintigraphy with In-111 octreotide and Tl-201 in a Hurthle cell thyroid carcinoma without detectable radio-iodine uptake. Report of a case and review of the literature. Horm Res. 2003;60:205–8.

    CAS  PubMed  Google Scholar 

  178. Christian JA, Cook GJ, Harmer C. Indium-111 labeled octreotide scintigraphy in the diagnosis and management of non-iodine avid metastatic carcinoma of the thyroid. Br J Cancer. 2003;89:258–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Gulec SA, Serafini AN, Sridhar KS, et al. Somatostatin receptor expression in Hurthle cell cancer of the thyroid. J Nucl Med. 1998;39:243–5.

    CAS  PubMed  Google Scholar 

  180. Valili N, Catargi B, Ronci N, et al. Evaluation of indium-111 pentetreotide somatostatin receptor scintigraphy to detect recurrent thyroid carcinoma in patients with negative radioiodine scintigraphy. Thyroid. 1999;9:583–9.

    Google Scholar 

  181. Blount CL, Dworkin HJ. F-18-FDG uptake by recurrent Hurthle cell carcinoma of the thyroid using high-energy planar scintigraphy. Clin Nucl Med. 1996;21:831–3.

    CAS  PubMed  Google Scholar 

  182. Plotkin M, Hautzel H, Krause BJ, et al. Implication of 2-18-fluoro-2-deoxyglucose positron emission tomography in the follow up of Hurthle cell thyroid cancer. Thyroid. 2002;12:155–61.

    PubMed  Google Scholar 

  183. Lowe VJ, Mullan BP, Hay ID, et al. FDG-PET of patients with Hurthle cell carcinoma. J Nucl Med. 2003;44:1402–6.

    PubMed  Google Scholar 

  184. Pryma DA, Schoder H, Gonen M, Robbins RJ, et al. Diagnostic accuracy and prognostic value of 18-F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med. 2006;47:1260–6.

    PubMed  Google Scholar 

  185. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer. 1998;83(12):2638–48.

    CAS  PubMed  Google Scholar 

  186. Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, et al. Medullary thyroid cancer: management guidelines of the American thyroid association. Thyroid. 2009;19(6):565–612.

    PubMed  Google Scholar 

  187. Lairmore TC, Wells Jr SA. Medullary carcinoma of the thyroid: current diagnosis and management. Semin Surg Oncol. 1991;7:92–9.

    CAS  PubMed  Google Scholar 

  188. DeLellis RA, Rule AH, Spiler I, Nathanson L, Tashjian Jr AH, et al. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol. 1978;70:587–94.

    CAS  PubMed  Google Scholar 

  189. Busnardo B, Girelli ME, Simioni N, et al. Nonparallel patterns of calcitonin and carcinoembryonic antigen levels in the follow up of medullary thyroid carcinoma. Cancer. 1984;53:278–85.

    CAS  PubMed  Google Scholar 

  190. Quayle FJ, Moley JF. Medullary thyroid carcinoma: including MEN 2A and MEN 2B syndromes. J Surg Oncol. 2005;89:122–9.

    PubMed  Google Scholar 

  191. Ugur O, Kostakglu L, Guler N, et al. Comparison of Tc-99m (V)-DMSA, Tl-201, and Tc-99m MIBI imaging in the follow up of patients with medullary carcinoma of the thyroid. Eur J Nucl Med. 1996;23:1367–71.

    CAS  PubMed  Google Scholar 

  192. Berna L, Chico A, Matias-Guiu X, et al. Use of somatostatin analogue scintigraphy in the localization of recurrent medullary thyroid carcinoma. Eur J Nucl Med. 1998;25:1482–8.

    CAS  PubMed  Google Scholar 

  193. Krausz Y, Rosler A, Guttmann H, et al. Somatostatin receptor scintigraphy for early detection of regional and distant metastases of medullary carcinoma of the thyroid. Clin Nucl Med. 1999;24:256–60.

    CAS  PubMed  Google Scholar 

  194. Adalet I, Kocak M, Oguz H, et al. Determination of medullary thyroid carcinoma metastases by Tl-201, Tc-99m (V) DMSA, Tc-99m MIBI and Tc-99m Tetrofosmin. Nucl Med Commun. 1999;20:353–9.

    CAS  PubMed  Google Scholar 

  195. Musholt TJ, Musholt PB, Dehdashti F, et al. Evaluation of fluorodeoxyglucose positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery. 1997;122:1049–60.

    CAS  PubMed  Google Scholar 

  196. Brandt-Mainz K, Muller SP, Gorges R, et al. The value of fluorine-18-fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med. 2000;27:490–6.

    CAS  PubMed  Google Scholar 

  197. Diehl M, Risse JH, Brandt-Mainz K, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicenter study. Eur J Nucl Med. 2001;28:1671–6.

    CAS  PubMed  Google Scholar 

  198. Szakall Jr S, Esik O, Bajzik G, et al. F-18-FDG-PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med. 2002;43:66–71.

    PubMed  Google Scholar 

  199. De Groot JW, Links TP, Jager PL, et al. Impact of F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol. 2004;11:786–94.

    PubMed  Google Scholar 

  200. Ong SC, Schoder H, Patel SG, Tabangay-Lim IM, et al. Diagnostic accuracy of 18F FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48:501–7.

    CAS  PubMed  Google Scholar 

  201. Khan N, Oriuchi N, Higuchi T, et al. Review of fluorine 18-2-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) in the follow up of medullary and anaplastic thyroid carcinomas. Cancer Control. 2005;12:254–60.

    PubMed  Google Scholar 

  202. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. F-18 DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med. 2001;28:64–71.

    CAS  PubMed  Google Scholar 

  203. Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lamrecht RM, et al. PET scanning of iodine-124-3-F9 as an approach to tumor dosimetry during treatment planning for radioimmuno-therapy in a child with neuroblastoma. J Nucl Med. 1992;33:2020–3.

    CAS  PubMed  Google Scholar 

  204. Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys. 1991;18:357–66.

    CAS  PubMed  Google Scholar 

  205. Eschmann SM, Reischl G, Bilger K, et al. Evaluations of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. J Nucl Med Mol Imaging. 2002;29:760–7.

    CAS  Google Scholar 

  206. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  207. Erdi YE, Macapinlac HA, Larson SM, et al. Radiation dose assessment for I-131 therapy for thyroid cancer using I-124 PET imaging. Clin Positron Imaging. 1999;2:41–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sacks, W., Waxman, A.D. (2012). Radioactive Iodine Therapy. In: Braunstein, G. (eds) Thyroid Cancer. Endocrine Updates, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0875-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0875-8_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0874-1

  • Online ISBN: 978-1-4614-0875-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics