Skip to main content

Abstract

Among the abiotic environmental factors temperature is the most important factor which significantly affects life processes of all organisms. Temperature stresses experienced by plants are usually classified into three types: (a) chilling stress (occurring at temperatures below freezing), (b) freezing stress (occurring at low temperatures above freezing), and (c) high temperature stress. This chapter shows the influence of low and high temperature to physiological and metabolic processes in plants. The consequences of chilling and freezing or heat stresses are presented as well as mechanisms of plant resistance to low or high temperature and adaptation or/and acclimatization possibilities is reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam BD, Nair B, Jacob J (2005) Low temperature stress modifies the photochemical efficiency, of a tropical tree species Hevea brasiliensis: effects of varying concentration of CO2 and photon flux density. Photosynthetica 43:247–252

    Article  CAS  Google Scholar 

  • Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Essential cell biology, 2nd edn. Garland Science, New York

    Google Scholar 

  • Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinasd J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38

    Article  PubMed  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  Google Scholar 

  • Al-Whaibi MH (2010) Plant heat-shock proteins: a mini review. J King Saud Univ (Sci). doi:10.1016/j.jksus.2010.06.022

  • Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158

    Article  PubMed  CAS  Google Scholar 

  • Amasino RM (2006) Vernalization: remembering winter with an environmentally induced epigenetic switch. Dev Biol 295:323

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  • Brown JA, Li D, Ic M (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chryosporium. Appl Environ Microbiol 59:4295–4299

    PubMed  CAS  Google Scholar 

  • Burbulis N, Kupriene R, Blinstrubiene A (2008) The effect of de-acclimation and re-acclimation treatments on winter rapeseed cold resistance in vitro, Scientific Works Of The Lithuanian Institute Of Horticulture And Lithuanian University Of Agriculture. Sodininkyste Ir Daržininkyste 27:233–240

    Google Scholar 

  • Burke J, Chen J (2006) Changes in cellular and molecular processes in plant adaptation to heat stress. In: Huang B (ed) Plant–environment interactions. CRC Press, New York

    Google Scholar 

  • Camejo D, Rodriguez P, Morales MA, Dellamico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  • Crafts-Brander C, Salvucci ME (2002) Sensitivity to photosynthesis in the C4 plant, maize to heat stress. Plant Cell 12:54–68

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  PubMed  CAS  Google Scholar 

  • Criddle RS, Hopkin MS, McArthur ED, Hansen LD (1994) Plant distribution and the temperature coefficient of metabolisms. Plant Cell Environ 17:233–243

    Article  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (2000) Effects of salicylic acid on oxidative stress and thermo-tolerance in tobacco. J Plant Physiol 156:659–665

    CAS  Google Scholar 

  • Dennis ES, Finnegan EJ, Bilodeau P, Chaudhury A, Genger R, Helliwell CA, Sheldon CC, Bagnall DJ, Peacock WJ (1996) Vernalization and the initiation of flowering. Cell Dev Biol 7:441–448

    Article  CAS  Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3rd edn. Academic, London

    Google Scholar 

  • Froux F, Ducrey M, Epron D, Dreyer E (2004) Seasonal variations and acclimation potential of the thermo stability of photochemistry in four Mediterranean conifers. Ann For Sci 61:235–241

    Article  CAS  Google Scholar 

  • Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgreen MG (2000) Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12:2441–2453

    Article  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Hekneby M, Antolin MC, Sanchez-Diaz M (2006) Frost resistance and biochemical changes during cold acclimation in different annual legumes. Environ Exp Bot 55:305–314

    Article  CAS  Google Scholar 

  • Hopkins WG (2006) The green word. Plant development. Chelsea House an Imprint of Infobase Publishing, New York

    Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Jan N, Mahboob-ul H, Andrabi KI (2009) Cold resistance in plants: a mystery unresolved. Electronic J Biotechnol 12. doi:10.2225/vol12-issue3-fulltext-3

    Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Hasegawa PM (eds) (2005) Plant abiotic stress. Blackwell, Oxford

    Google Scholar 

  • Kacperska A (1998) Plant responses to stress factors. In: Kopcewicz J, Lewak S (eds) Basis of plant physiology. Wydawnicto Naukowe PWN, Warszawa, pp 575–633

    Google Scholar 

  • Kartsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  Google Scholar 

  • Kato-Noguchi H (2007) Low temperature acclimation to chilling tolerance in rice roots. Plant Growth Regul 51:171–175

    Article  CAS  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    CAS  Google Scholar 

  • Kepova KD, Holzer R, Stoilova LS, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco bindind protein and Rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  Google Scholar 

  • Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  PubMed  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Klueva NY, Maestri E, Marmiroli N, Nguyen HT (2001) Mechanisms of thermotolerance in crops. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, pp 177–217

    Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bhatla SC (2006) Polypeptide markers for low temperature stress during seed germination in sunflower. Biol Plantarum 50:81–86

    Article  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermo-tolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell, Oxford, pp100–144

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    Article  PubMed  CAS  Google Scholar 

  • Levine RD (2005) Molecular reaction dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Levitt J (1980) Responses of plants to environment al stress. Vol. I. Chilling, freezing, and high temperature stresses, 2nd edn. Academic, New York

    Google Scholar 

  • Li Ch, Junttila O, Palva ET (2004) Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiol Plant 26:213–222

    Article  CAS  Google Scholar 

  • Li C, Wu N, Liu S (2005a) Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. Biol Plantarum 49:65–71

    Article  Google Scholar 

  • Li Ch, Yongqing Y, Junttila O, Palva ET (2005b) Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. Plant Sci 168:1365–1370

    Article  CAS  Google Scholar 

  • Liang W, Wang M, Ai X (2009) The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci Hortic 123:34–38

    Article  CAS  Google Scholar 

  • Lindberg S, Banas A, Stymne S (2005) Effects of different cultivation temperatures on plasma membrane ATPase activity and lipid composition of sugar beet roots. Plant Physiol Biochem 43:261–268

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    Article  PubMed  CAS  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Mahajan Sh, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Change Biol 11:2078–2089

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Minorsky PV (1989) Temperature sensing by plants: a review and hypothesis. Plant Cell Environ 12:119–135

    Article  CAS  Google Scholar 

  • Mitra R, Bhatia CR (2008) Bioenergetic cost of heat tolerance in wheat crop. Curr Sci 94:1049–1053

    CAS  Google Scholar 

  • Morales D, Rodriguez P, Dellamico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Muller O, Hikosaka K, Hirose T (2005) Seasonal changes in light and temperature affect the balance between light harvesting and light utilization components of photosynthesis in an evergreen understory shrub. Oecologia 143:501–508

    Article  PubMed  Google Scholar 

  • Ohnishi S, Miyoshi T, Shirai S (2010) Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environ Exp Bot 69:56–62

    Article  Google Scholar 

  • Opik H, Rolfe S (2005) Reproductive development. In Öpik H, Rolfe S (eds) The physiology of flowering plants, 4th edn. Cambridge University Press, Cambridge UK, pp 270–317

    Google Scholar 

  • Plieth C (1999) Temperature sensing by plants: calcium-permeable channels as primary sensors – a model. J Membr Biol 172:121–127

    Article  PubMed  CAS  Google Scholar 

  • Price N, Stevens L (1999) Fundamentals of enzymology: cell and molecular biology of catalytic proteins. Oxford University Press, Oxford

    Google Scholar 

  • Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Res 85:149–158

    Article  Google Scholar 

  • Rajashekar CB (2000) Cold response and freezing tolerance in plants, In: Wilkinson RE (ed) Plant–environment interactions, 2nd edn. Marcel Dekker, Inc. New York USA, pp 321–342

    Article  Google Scholar 

  • Rorat T (2006) Plant dehydrins – tissue location, structure and function. Cell Mol Biol 11:536–556

    Article  CAS  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Zhimin Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  PubMed  CAS  Google Scholar 

  • Savchenko GE, Klyuchareva EA, Abrabchik LM, Serdyuchenko EV (2002) Effect of periodic heat shock on the membrane system of etioplasts. Russ J Plant Physiol 49:349–359

    Article  CAS  Google Scholar 

  • Sheldon CC, Finnegan EJ, Rouse DT, Tadege M, Bagnall DJ, Helliwell CA, Peacock WJ, Dennis ES (2000) The control of flowering by vernalization. Curr Opin Plant Biol 3:418–422

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plant 14:155–166

    Article  CAS  Google Scholar 

  • Snyman M, Cronje MJ (2008) Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot 59:2125–2132

    Article  PubMed  CAS  Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14:69–79

    Article  CAS  Google Scholar 

  • Stushnoff C, Flower DB, Brule-Babel A (1984) Breeding and selection for resistance to low temperature. In: Vose PB (ed) Plant breeding – a contemporary basis. Pergamon Press, Oxford, pp 115–136

    Google Scholar 

  • Sumesh KV, Sharma-Natu P, Ghildiyal MC (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol Plantarum 52:749–753

    Article  CAS  Google Scholar 

  • Sun CW, Callis J (1997) Independent modulation of Arabidopsis thaliana polyubiquitin m RNAs in different organs of and in response to environmental changes. Plant J 11:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Sun W-H, Duan M, Li F, Shu D-F, Yang S, Meng Q-W (2010) Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol Plantarum 54:614–620

    Article  CAS  Google Scholar 

  • Sung D, Kaplan F, Lee K, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Phisiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Talanova VV, Akimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physiol 50:90–94

    Article  CAS  Google Scholar 

  • Tang L, Kwon S-Y, Kim S-H, Kim J-S, Choi JS, Cho KY, Sung CK, Kwak S-S, Lee H-S (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berge JD, Nayyar H (2009) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  Google Scholar 

  • Tretyn A, Głowacka K, Galoch E, Kasprzak K, Kulikowska-Gulewska H, Kopcewicz J (2003) Investigation on the chemical nature of flower-inducing factor(s) in short-day plant Pharbitis nil. In: Machackova I (ed) Phytohormones in plant biotechnology and agriculture. Kluwer, Dordrecht, pp 67–78

    Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang L-J, Li S-H (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plantarum 53:237–242

    Article  CAS  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169:1269–1278

    Article  CAS  Google Scholar 

  • Wilkinson RE (ed) (2000) Plant–environment interactions, 2nd edn. Marcel Dekker, Inc. New York USA

    Article  CAS  Google Scholar 

  • Wróbel M, Karamac M, Amarowicz R, Frączek E, Weidner S (2005) Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiol Plant 27:313–320

    Article  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yang X, Chen X, Ge Q, Li B, Tong Y, Zhang A, Li Z, Kuang T, Lu C (2006a) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    Article  CAS  Google Scholar 

  • Yoshida S, Hotsubo Y, Kawamura Y, Murai M, Arakawa K (1999) Alternations in intracellular pH in response to low temperature stress. J Plant Res 112:225–236

    Article  CAS  Google Scholar 

  • Zhang Ch, Tian Sh (2010) Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chem 120:864–872

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Źróbek-Sokolnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Źróbek-Sokolnik, A. (2012). Temperature Stress and Responses of Plants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_5

Download citation

Publish with us

Policies and ethics