Skip to main content

Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance

  • Chapter
  • First Online:
Book cover Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change

Abstract

Halophytes are a diverse group of plants with tolerance to high salinity. While most of our crops are glycophytes lacking the genetic makeup for salt tolerance, halophytes are endowed with ability to seize NaCl into their cell vacuoles as an osmoticum. The sensitivity of crops to environmental extremities has become a major limitation to worldwide food production. Study of halophytes can be rewarding as the mechanisms by which halophytes survive and maintain productivity on saline water can be understood to define and manage adaptations in glycophytes. The adaptation mechanisms include ion compartmentalization, osmotic adjustment, succulence, ion transport and uptake, antioxidant systems, maintenance of redox and energetic status, and salt inclusion/excretion. Real benefits can be accrued if sustained efforts are in place to investigate the species-­specific regulation during abiotic stresses and extend genetic resource and manipulate stress tolerance mechanisms. Halophytes are also an important plant species with potential for the purposes of desalination and restoration of saline soils, withstand high soil salinity and saline water irrigation, phytoremediation and wetland restoration. It will be invaluable to develop these strategies to ensure sustainability, and future efforts to improve crop performance on marginal and irrigated land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelly C, Lachaal M, Grignon C, Soltani A, Hajji M (1995) Association episodique d’halophytes strictes et de glycophytes dans un ecosysteme hydromorphe sale en zone semi-aride. Agronomie 15:557–568

    Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Cell 26:225–227

    Google Scholar 

  • Almeida CMR, Mucha AP, Vascancelos MTSD (2006) Variability of metal contents in the sea rush Juncus maritimus-estuarine sediment system through one year of plant’s life. Mar Environ Res 61:424–438

    PubMed  CAS  Google Scholar 

  • Almeida CMR, Dias AC, Mucha AP, Bordalo AA, Vascancelos MTSD (2009) Study of the influence of different organic pollutants on Cu accumulation by Halimione portulacoides. Estuar Coast Shelf Sci 85:627–632

    CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in Plants. Mol Plant 2:3–12

    PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    PubMed  CAS  Google Scholar 

  • Aronson JA (1989) HALOPH a data base of salt tolerant plants of the world. Office Arid Land Studies, University of Arizona, Tucson

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Attipali RR, Kolluru VC, Munusamy V (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–143

    Google Scholar 

  • Bao-Yan AN, Yan L, Jia-Rui L, Wei-Hua Q, Xian-Sheng Z, Xin-Qi Z (2002) Expression of a vacuolar Na+/H+ antiporter gene of alfalfa enhances salinity tolerance in transgenic  Arabidopsis. Acta Agron Sin 34:557–564

    Google Scholar 

  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 68:889–899

    Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations-making metabolism move. Curr Opin Plant Biol 1:267–274

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    PubMed  CAS  Google Scholar 

  • Bor MF, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164:77–84

    CAS  Google Scholar 

  • Breckel SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Lauchli A, Luttge U (eds) Salinity: environment-plants-molecules. Kluwer, Dordrecht, pp 53–77

    Google Scholar 

  • Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4:136–142

    PubMed  CAS  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292

    CAS  Google Scholar 

  • Brockmeyer RE Jr, Rey JR, Virnstein RW, Gilmore RG, Ernest L (1997) Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA). Wetland Ecol Manag 4:93–109

    Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    PubMed  CAS  Google Scholar 

  • Carias CC, Novais JM, Martins-Dias S (2008) Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7? Bioresour Technol 99:243–251

    PubMed  CAS  Google Scholar 

  • Castro R, Pereira S, Lima A, Corticeiro S, Valega M, Pereira E, Duarte A, Figueira E (2009) Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76:1348–1355

    PubMed  CAS  Google Scholar 

  • Chai CL, Li SH, Xu YC (2001) Carbohydrate metabolism in peach leaves during water stress and after stress relief. Plant Physiol Commun 37:495–498

    CAS  Google Scholar 

  • Chen XY, Tsang EPK, Chan ALW (2003) Heavy metal contents in sediments, mangroves and bivalves from Ting Kok, Hong Kong. China Environ Sci 23:480–484

    CAS  Google Scholar 

  • Cherian S, Reddy MP, Pandya JB (1999) Studies on salt tolerance in Avicennia marina (Forsk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian J Plant Physiol 4:266–270

    CAS  Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. Biol Plant 46:193–198

    CAS  Google Scholar 

  • Chiu CY, Hsiu FS, Chen SS, Chou CH (1995) Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Bot Bull Acad Sin 36:19–24

    CAS  Google Scholar 

  • Coleman J, Hench K, Garbutt K, Sexstone A, Bissonnette G, Skousen J (2001) Treatment of domestic wastewater by three plant species in constructed wetlands. Water Air Soil Pollut 128:283–295

    CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytol 179:964–974

    PubMed  CAS  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    CAS  Google Scholar 

  • Cushman JC (2003) Functional genomics of plant abiotic stress tolerance. In: Prade RA, Bohnert HJ (eds) Genomics of plants and fungi. Marcel Dekker, New York, pp 315–357, 18

    Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Eid MA, Eisa SS (2010) The use of some halophytic plants to reduce Zn, Cu and Ni in soil. Aust J Basic Appl Sci 4:1590–1596

    CAS  Google Scholar 

  • Epstein E (1980) Response of plants to saline environments. In: Rains DW, Valentine RC, Hollaender A (eds) Genetic engineering of osmoregulation. Plenum, New York, pp 7–21

    Google Scholar 

  • Fan W, Zhang Z, Zhang Y (2009) Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep. doi:10.1007/s00299-009-0702-6

  • Fang ZQ, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430

    Google Scholar 

  • Fang Q, Xu Z, Song R (2006) Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila. Biochem Biophys Res Commun 347:707–714

    PubMed  CAS  Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the suir Estuary. Ireland Environ Pollut 123:67–74

    CAS  Google Scholar 

  • Flowers TJ (1985) Physiology of halophytes. Plant Soil 89:41–56

    CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance. Funct Plant Biol 37:604–612

    Google Scholar 

  • Food and Agricultural Organization (FAO) (2003) New global mangrove estimate. http://www.fao.org/forestry/foris/webview/forestry2/index.jsp%3Fgeold=0%26langid

    Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Fukushima Y, Sasamoto H, Baba S, Ashihara H (1997) The effect of salt stress on the catabolism of sugars in leaves and roots of a mangrove plant Avicennia marina. Z Naturforsch 52:187–192

    CAS  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumachner K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    PubMed  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effect of Cd2+ on K+, Ca+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembrynathemum crystallinum: consequences on growth. Chemosphere 67:72–79

    PubMed  CAS  Google Scholar 

  • Glenn EP, Brown JJ (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255

    Google Scholar 

  • Glenn E, Miyamoto M, Moore D, Brown JJ, Thompson TL, Brown P (1997) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730

    Google Scholar 

  • Gonzalez JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and water logging stresses: dry matter partitioning. Bot Stud 50:35–42

    CAS  Google Scholar 

  • Goudie AS (1990) Soil salinity-causes and controls. In: Techniques for desert reclamation (ed) J. Wiley and Sons Ltd., Wiley, Chichester, England, pp 110–111

    Google Scholar 

  • Guo XL, Cao YR, Cao ZY, Zhao YX, Zhang H (2004) Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa. Plant Sci 167:969–975

    CAS  Google Scholar 

  • Hafsi C, Romero-Puertas MC, Gupta DK, del Riob LA, Sandalio LM, Abdelly C (2010) Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ Exp Bot 69:129–136

    CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Hollington PA, Hussain Z, Kahlown MA, Abdullah M (2001) Success stories in saline agriculture in Pakistan: from research to production and development. In: BAC saline agriculture conference Dubai, 19–21 Mar 2001

    Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of ∆1-Pyrroline-5-Carboxylate Synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    PubMed  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    PubMed  CAS  Google Scholar 

  • Huang J, Reneau RB Jr, Hagedorn C (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res 34:2582–2588

    CAS  Google Scholar 

  • Hurst AC, Grams TEE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Environ 27:187–197

    CAS  Google Scholar 

  • Hutchings P, Saenger P (1987) Ecology of mangroves. University of Queensland Press, New York

    Google Scholar 

  • Iwasaki K (1987) The effectiveness of salt-accumulating plants in reclaiming salinized soils. Jpn J Trop Agric 31:255–261

    CAS  Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    PubMed  CAS  Google Scholar 

  • Jennings DH (1968) Microelectrode experiments with potato cells: a re-interpretation of the experimental findings. J Exp Bot 19:13

    Google Scholar 

  • Jitesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanism in halophytes: their role in stress defence. J Genet 85:237–254

    Google Scholar 

  • Kadukova J, Kalogerakis N (2007) Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. Eur J Soil Biol 43:216–223

    CAS  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phytoexcretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediation 10:31–46

    PubMed  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    PubMed  CAS  Google Scholar 

  • Kavitha K, Venkataraman G, Parida A (2008) An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization. Plant Physiol Biochem 46:794–804

    PubMed  CAS  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    PubMed  CAS  Google Scholar 

  • Ketchum REB, Warren RC, Klima LJ, Lopez-Gutierrez F, Nabors MW (1991) The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata L. J Plant Physiol 137:368–374

    CAS  Google Scholar 

  • Khan MA, Ansari R (2008) Potential use of halophytes with emphasis on fodder production in coastal areas of Pakistan. In: Abdelly C, Ozturk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhauser Verlag, Basel, pp 157–162

    Google Scholar 

  • Khan MA, Qaiser M (2006) Halophytes of Pakistan: distribution, ecology, and economic importance. In: Khan MA, Barth H-J, Kust GC, Boer B (eds) Sabkha ecosystems: Vol II, The South and Central Asian countries. Springer, Drodrecht, pp 135–160

    Google Scholar 

  • Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341:83–92

    PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    PubMed  CAS  Google Scholar 

  • Lacerda LD (1997) Trace metals in mangrove plants: why such low concentrations? In: Kjerfve B, Lacerda LD, Diop HS (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 171–178

    Google Scholar 

  • Lauchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. American Society of Civil Engineering, New York, pp 113–137

    Google Scholar 

  • Lefevre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    CAS  Google Scholar 

  • Lewis RR (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 24:403–418

    Google Scholar 

  • Lewis RR, Streever W (2000) Restoration of mangrove habitat. Tech Note ERDC TN-WRP-VN-RS-3. US Army, Corps of Engineers, Waterways Experiment Station, Vicksburg, MS

    Google Scholar 

  • Li TH, Li SH (2005) Leaf responses of micropropagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiol 25:395–404

    CAS  Google Scholar 

  • Li QL, Liu DW, Gao XR, Su Q, An LJ (2003) Cloning of cDNA encoding choline mono- oxygenase from  Suaeda liaotungensis  and salt tolerance of transgenic tobacco. Acta Bot Sin 45:242–247

    CAS  Google Scholar 

  • Li Q, Yin H, Li D, Zhu H, Zhang Y, Zhu W (2007) Isolation and characterization of  CMO  gene promoter from halophyte  Suaeda liaotungensis  K. J Genet Genom 34:355–361

    CAS  Google Scholar 

  • Lilebo AI, Valega M, Otero M, Pardal MA, Pereira E, Duarte AC (2010) Daily and inter-tidal variations of Fe Mn and Hg in the water column of a contaminated salt marsh: halophytes effect. Estuar Coast Shelf Sci 88:91–98

    Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010a) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25

    Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010b) Differential osmotic adjustment to iso-osmotic salt and PEG stress in vitro in the halophyte Sesuvium portulacastrum L. J Crop Sci Biotechnol 13:251–256

    Google Scholar 

  • Lokhande VH, Srivastava AK, Srivastava S, Nikam TD, Suprasanna P (2010c) Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L. Plant Growth Regul DOI 10.1007/s10725-011-9600-3

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011a) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:41–49

    CAS  Google Scholar 

  • Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011b) Investigation of arsenic accumulation and tolerance in Sesuvium portulacastrum (L.). Chemosphere 82:529–534

    PubMed  CAS  Google Scholar 

  • Lokhande VH, Srivastava AK, Srivastava S, Nikam TD, Suprasanna P (2011c) Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L. Plant Growth Regul 10.1007/s10725-011-9600-3

    PubMed  CAS  Google Scholar 

  • Lovelock CE, Ball MC (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Luttge U (eds) Salinity: environment-plant-molecules. Kluwer, Dordrecht, pp 315–339

    Google Scholar 

  • M’rah S, Ouerghi Z, Berthomieu C, Havaux M, Jungas C, Hajji M, Grignon C, Lachaal M (2006) Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J Plant Physiol 163:1022–1031

    PubMed  Google Scholar 

  • MacFarlane GR, Burchett MD (1999) Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environ Exp Bot 41:167–175

    CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationship of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh.: biological indication potential. Environ Pollut 123:139–151

    Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    PubMed  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadonatonakis N, Kalogerakis and N (2008) Phytoextraction and Phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Google Scholar 

  • Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    PubMed  CAS  Google Scholar 

  • Masters DG, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosyst Environ 119:234–248

    CAS  Google Scholar 

  • Megdichi W, Ben Amor N, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    Google Scholar 

  • Menzel U, Lieth H (2003) HALOPHYTE Database V. 2.0 update. In: Lieth H, Mochtchenko M (eds) Cash crop halophytes. Kluwer, Dordrecht, CD-ROM

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725

    CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33(4):453–467

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York

    Google Scholar 

  • Mittler M (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycine betaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349

    CAS  Google Scholar 

  • Moseki B, Buru JC (2010) Ionic and water relations of Sesuvium portulacastrum (L). Sci Res Essay 5:35–40

    Google Scholar 

  • Mulholland MM, Otte ML (2002) The effects of nitrogen supply and salinity on DMSP, glycine betaine- and proline concentrations in leaves of Spartina anglica. Aquat Bot 72:193–200

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Nah G, Pagliarulo CL, Mohr PG, Luo M, Sisneros N, Yu Y, Collura K, Currie J, Goicoechea JL, Wing RA et al (2009) Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94:196–203

    PubMed  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione. Keeping active oxygen under control. Ann Rev Plant Physiol Mol Biol 49:249–279

    CAS  Google Scholar 

  • Nouairi I, Ghnaya T, Youssef NB, Zarrouk M, Ghorbel MH (2006) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J Plant Physiol 163:1198–1202

    CAS  Google Scholar 

  • Oh D-H, Leidi E, Zhang Q, Hwang S-M, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Sang Lee Y, Zhao Y, Bahk JD, Bressan RA, Yun D-J, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 15:210–222

    Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    PubMed  CAS  Google Scholar 

  • Ozawa T, Miura M, Fukuda M, Kakuta S (2009) Cadmium tolerance and accumulation in a halophyte Salicornia europaea as a new candidate for phytoremediation of saline soils. Sci Rep Grad Sch Life Environ Sci Osaka Pref Univ 60:1–8

    Google Scholar 

  • Pagter M, Bragato C, Malagoli M, Brix H (2009) Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat Bot 90:43–51

    CAS  Google Scholar 

  • Paramonova NV, Shevyakova NI, Kuznetsov VV (2004) Ultrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russ J Plant Physiol 1:86–96

    PubMed  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguirea parviflora: differential, regulations of isoforms of some antioxidant enzymes. Plant Growth Regul 42:213–226

    CAS  Google Scholar 

  • Patra J, Panda BB (1998) A comparison of biochemical responses to oxidative and metal stress in seedlings of barley, Hordeum vulgare L. Environ Pollut 101:99–105

    PubMed  CAS  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    CAS  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G, Amini A, Bravo RC et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1017

    CAS  Google Scholar 

  • Popova OV, Yang O, Dietz KJ, Golldack D (2008) Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene 423:142–148

    PubMed  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology – A charging concept. Plant Physiol Biochem 48:292–300

    PubMed  CAS  Google Scholar 

  • Qadir M, Oster J (2004) Crop and irrigation management strategies for saline–sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    PubMed  CAS  Google Scholar 

  • Qi CH, Chen M, Song J, Wang BS (2009) Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci 176:200–205

    CAS  Google Scholar 

  • Queval G, Noctor G (2007) A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts. Application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    PubMed  CAS  Google Scholar 

  • Rabhi M, Hafsi C, Lakhdar A, Barhoumi Z, Hamrouni MH, Abdelly C, Smauoi A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol 47:463–468

    Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101:6822–6828

    PubMed  CAS  Google Scholar 

  • Ramadan T (2000) Dynamics of salt secretion by Sporobolus Spicatus (Vahl) kunth from sites of differing salinity. Ann Bot 87:259–266

    Google Scholar 

  • Rammesmayer G, Pichorner H, Adams P, Jensen RG, Bohnert HJ (1995) Characterization of IMT1, myo-inositol O-methyltrasferase, from Mesembryanthemum crystallinum. Arch Biochem Biophys 322:183–188

    PubMed  CAS  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101:25–77

    CAS  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Cehllappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    CAS  Google Scholar 

  • Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154

    PubMed  CAS  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84

    PubMed  CAS  Google Scholar 

  • Reda EAM, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophyte plants, Salicornia europaea and Suaeda maritime. Plant Sci 166:1345–1349

    Google Scholar 

  • Reddy MP, Shah MT, Patolia JS (2008) Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind Crops Prod 28:273–278

    CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010a) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    PubMed  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010b) Salt stimulation of growth and photosynthesis in extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87

    PubMed  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann Rev Plant Physiol Mol Biol 44:357–384

    CAS  Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    CAS  Google Scholar 

  • Rozema J (1991) Growth, water and ion relationships of halophytic monocotyledonae and dicotyledonae – a unified concept. Aquat Bot 39:17–33

    Google Scholar 

  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859–865

    PubMed  CAS  Google Scholar 

  • Sadiq M, Zaidi TH (1994) Sediment composition and metal concentrations in mangrove leaves from the Saudi coast of the Arabian Gulf. Sci Total Environ 155:1–8

    CAS  Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, Dordrecht

    Google Scholar 

  • Saenger P, Siddiqi NA (1993) Land from the seas: the mangrove afforestration program of Bangladesh. Ocean Coast Manag 20:23–39

    Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-­salinity stresses using a full-length cDNA microarray. Plant J 3:279–292

    Google Scholar 

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    PubMed  CAS  Google Scholar 

  • Seliskar DM, Gallagher JL (2000) Exploiting wild population diversity and somaclonal variation in the salt marsh grass Distichlis spicata (Poaceae) for marsh creation and restoration. Am J Bot 87:141–146

    PubMed  CAS  Google Scholar 

  • Shahid SA (2002) New technologies for soil reclamation and desert greenery In: Nader MA, Faisal KT (eds) Proceedings of the joint KISR – PEC symposium Yazd, Iran, pp 308–329

    Google Scholar 

  • Sharma BR, Minhas PS (2005) Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric Water Manag 78:136–151

    Google Scholar 

  • Shen YG, Du BX, Zhang JS, Chen SY (2001) Cloning and characterization of CMO gene from  Atriplex hortensis. Chin J Biotechnol 17:1–6

    CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H  +  antiporter. Proc Natl Acad Sci USA 97:6896–6901

    PubMed  CAS  Google Scholar 

  • Silveira JAG, Araujo SAM, Lima JPMS, Viegas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Enviorn Exp Bot 66:1–8

    CAS  Google Scholar 

  • Slama I, Ghnaya T, Savouŕe A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    PubMed  CAS  Google Scholar 

  • Slesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C3-CAM plant Mesembryanthemum crystallinum L. in in vitro culture. Plant Sci 164:497–505

    CAS  Google Scholar 

  • Slesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677

    CAS  Google Scholar 

  • Slesak I, Slesak H, Libik M, Miszalski Z (2008) Antioxidant response system in the short-term post-wounding effect in Mesembryanthemum crystallinum leaves. J Plant Physiol 165:127–137

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86

    Google Scholar 

  • Sousa AI, Caçador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra -and extra-cellular metal binding sites. Chemosphere 70:850–857

    PubMed  CAS  Google Scholar 

  • Srinivas V, Balasubramanian D (1995) Proline is a protein-compatible hydrotrope. Langmuir 11:2830–2833

    CAS  Google Scholar 

  • Subbarao GV, Levine LH, Wheeler RM, Stutte GW (2001) Glycine betaine accumulation: its role in stress resistance in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 881–907

    Google Scholar 

  • Sucre B, Suarez N (2010) Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pes-caprae. Environ Exp Bot 70:192–203

    Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    PubMed  Google Scholar 

  • Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of halophyte  Atriplex nummularia  L. Plant Cell Physiol 46:505–513

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–5027

    PubMed  CAS  Google Scholar 

  • Tipirdamaz R, Gagneul D, Duhaze C, Ainouche A, Monnier C, Zokum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153

    CAS  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MA, Estrelles E, Belles JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic, New York

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2004a) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–293

    PubMed  CAS  Google Scholar 

  • Wang LW, Showalter AM (2004b) Cloning and saltinduced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrate. Physiol Plant 120:405–412

    PubMed  CAS  Google Scholar 

  • Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    PubMed  CAS  Google Scholar 

  • Wang CQ, Xu C, Wei JG, Wang HB, Wang SH (2008a) Enhanced tonoplast H+ -ATPase activity and superoxide dismutase activity in the halophyte Suaeda salsa containing high level of betacyanin. J Plant Growth Regul 27:58–67

    Google Scholar 

  • Wang KS, Huang LC, Lee HS, Chen PY, Chang SH (2008b) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672

    PubMed  CAS  Google Scholar 

  • Wong CE, Yong L, Aurelie L, David G, Paulo N, Brett W, Claudia D, Brian GG, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metal toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yang YL, Shi R, Wei X, Fan Q, An L (2010) Effect of salinity on antioxidant enzymes in calli of the halophyte  Nitraria tangutorum  Bobr. Plant Cell Tissue Organ Cult 102:387–395

    CAS  Google Scholar 

  • Yensen NP (2006) Halophyte uses for the twenty-first century. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 367–396

    Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:161–173

    Google Scholar 

  • Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577:452–456

    PubMed  CAS  Google Scholar 

  • Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Plant Biotechnol 8:2004–2010

    Google Scholar 

  • Zabłudowska E, Kowalska J, Jedynak L, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation – What can we learn from field and hydroponic studies? Chemosphere 77:301–307

    PubMed  Google Scholar 

  • Zahran MA, Wahid AAA (1982) Halophytes and human welfare. In: Sen DN, Rajpurohit KS (eds) Contributions to the ecology of halophytes. D.W. Junk Publishers, Boston, pp 235–257

    Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010a) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mat. doi:10.1016/j.jhazmat.2010.07.068

  • Zaier H, Mudarra A, Kutscher D, Fernandez de la Campa MR, Abdelly C, Sanz-Medel A (2010b) Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization-time of flight-mass spectrometry. Anal Chim Acta. doi:10.1016/j.aca.2010.04.054

  • Zhang F, Yang YL, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cell Dev Biol Plant 40:491–494

    CAS  Google Scholar 

  • Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335

    PubMed  CAS  Google Scholar 

  • Zhao KF (1991) Desalinization of saline soils by Suaeda salsa. Plant Soil 135:303–305

    CAS  Google Scholar 

  • Zhao K, Hai F, Ungar IA (2002) Survey of halophytes species in China. Plant Sci 163:491–498

    Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lokhande, V.H., Suprasanna, P. (2012). Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_2

Download citation

Publish with us

Policies and ethics