Skip to main content

Abstract

The contamination of water, soil, and sediments with toxic metals has been and will continue to be a major environmental problem that needs to be dealt with. In more recent years, the studies with metals have concentrated on the antioxidant stress response characterization in a wide range of plant species. The effects of many different metals have been published, but all have consistently addressed very similar problems and investigated basic parameters. These kinds of studies are important as they allow the verification of the sensitivities of different plant species to distinct metals, eventually indicating specific biomarkers to stressful situations. However, metal-induced stress studies need new approaches that are likely to increase our understanding as how these elements affect plant metabolism and to identify the modifications that are needed to improve plant adaptation and tolerance. New techniques that have greatly improved the identification, localization, and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterization of plants used in the process of phytoremediation of soils contaminated with toxic metals. In this chapter, we discuss the use of new techniques and approaches to study the effects of toxic metals and we propose a more integrated action among distinct areas in the field of metallomics and other “omics.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Saigal PT, Deswal R (2008) S-nitrosylation – another biological switch like phosphorylation? Physiol Mol Biol Plants 14:119–130

    CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR), Agency for Toxic Substances and Disease Registry (ATSDR) (2007) CERCLA priority list of hazardous substances. Department of Health and Human Services, Atlanta, GA, http://www.atsdr.cdc.gov/cercla/07list.html. Accessed 3 Sept 2010

    Google Scholar 

  • Agrawal GK, Jwa NS, Iwahashi Y, Yonekura M, Iwahashi H, Rakwal R (2006) Rejuvenating rice proteomics: facts, challenges, and visions. Proteomics 6:5549–5576

    PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komats US, Lee BH (2008a) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    PubMed  CAS  Google Scholar 

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008b) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46:1062–1070

    PubMed  CAS  Google Scholar 

  • Aki T, Yanagisawa S (2009) Application of rice nuclear proteome analysis to the identification of evolutionarily conserved and glucose-responsive nuclear proteins. J Proteome Res 8:3912–3924

    PubMed  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Yadav S, Fariduddin Q, Ahmad A (2008) A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mungbean (Vigna radiata L Wilczek). Environ Exp Bot 62:153–159

    CAS  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    PubMed  CAS  Google Scholar 

  • Andrade LF, Davies LC, Gedraite LS (2010) The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol Environ Saf 73:626–631

    PubMed  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472

    CAS  Google Scholar 

  • Arruda MAZ (2007) Trends in sample preparation. Nova Science Pub. Inc., New York, NY, 304pp

    Google Scholar 

  • Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    PubMed  CAS  Google Scholar 

  • Azevedo JA, Azevedo RA (2006) Heavy metals and oxidative stress: where do we go from here? Commun Biometry Crop Sci 1:135–138

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    PubMed  CAS  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    CAS  Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol 35:22–34

    CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:51004–51011

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Bettmer J, Bayón MM, Encinar JR, Sánchez MLF, Campa MRF, Sanz-Medel A (2009) The emerging role of ICP-MS in proteomic analysis. J Proteomics 72:989–1005

    PubMed  CAS  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    PubMed  CAS  Google Scholar 

  • Blanco F, Garreton V, Frey N, Dominguez C, Perez-Acle T, van Der Straeten D, Jordana X, Holuigue L (2005) Identification of NPR1-dependent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol 59:927–944

    PubMed  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416

    PubMed  CAS  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of a climate change for biogeochemical cycling in forests of northeastern North America. Can J Forest Res 39:264–284

    CAS  Google Scholar 

  • Campos ML, de Almeida M, Rossi ML, Martinelli AP, Junior CGL, Figueira A, Rampelotti-Ferreira FT, Vendramim JD, Benedito VA, Peres LEP (2009) Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J Exp Bot 60:4347–4361

    PubMed  CAS  Google Scholar 

  • Cao SF, Zheng YH, Wang KT, Jin P, Rui HJ (2009) Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem 115:1458–1463

    CAS  Google Scholar 

  • Caruso JA, Wrobe K (2005) Metallomics approach to trace element analysis in Ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection. J Agric Food Chem 53:5138–5143

    PubMed  Google Scholar 

  • Cavusoglu K, Ergene A, Yalcin E, Tan S, Cavusoglu K, Yapar K (2009) Cytotoxic effects of lead and mercury ions on root tip cells of Cicer arietinum L. Fresen Environ Bull 18:1654–1661

    CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current Sci 87:342–348

    CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90

    CAS  Google Scholar 

  • Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114:157–164

    PubMed  CAS  Google Scholar 

  • Comparot SM, Graham CM, Reid DM (2002) Methyl jasmonate elicits a differential antioxidant response in light-and dark-grown canola (Brassica napus) roots and shoots. Plant Growth Regul 38:21–30

    CAS  Google Scholar 

  • Coulaud J, Barghi N, Lefebvre C, Siljak-Yakovlev S (1999) Cytogenetic variation in populations of Armeria maritima (Mill.) Willd. in relation to geographical distribution and soil stress tolerances. Can J Bot Revue Canadienne de Bot 77:673–685

    Google Scholar 

  • Cui S, Huang F, Wang J, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    PubMed  CAS  Google Scholar 

  • Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol Med 28:773–778

    PubMed  CAS  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment of 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:332–342

    Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signaling. Protoplasma 245:3–14

    PubMed  CAS  Google Scholar 

  • El-Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid and Salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • El-Khallal SM, Hathout TA, El Raheim A, Ahsour A, Kerrit AA (2009) Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Res J Agri Biol Sci 5:391–402

    CAS  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    CAS  Google Scholar 

  • Garcia JS, Souza GHMF, Eberlin MN, Arruda MAZ (2009) Evaluation of metal-ion stress in sunflower (Helianthus annuus L.) leaves through proteomic changes. Metallomics 1:107–113

    CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    PubMed  CAS  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201–211

    PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    CAS  Google Scholar 

  • González-Fernández M, García-Barrera T, Jurado J, Prieto-Álamo MJ, Pueyo C, López-Barea J, Gómez-Ariza JL (2008) Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. Pure Appl Chem 80:2609–2626

    Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro–Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Google Scholar 

  • Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394

    Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Harmon SM, Wyatt DE (2008) Evaluation of post-Katrina flooded soils for contaminants and toxicity to the soil invertebrates Eisenia fetida and Caenorhabditis elegans. Chemosphere 70:1857–1864

    PubMed  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietrinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66

    PubMed  CAS  Google Scholar 

  • Hayat S, Ali B, Aiman HS, Ahmad A (2007a) Brassinosteroids enhanced antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007b) Effect of 28-homobrassinolide on salinity-induced changes in Brassica juncea. Turk J Biol 31:141–146

    CAS  Google Scholar 

  • Heckathorn SA, Muller JK, Laguidice S, Zhu B, Berret T, Blair B, Dong J (2004) Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am J Bot 91:1312–1318

    PubMed  CAS  Google Scholar 

  • Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431

    CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    PubMed  CAS  Google Scholar 

  • Huang Y, Bie Z, He S, Bin Hua B, Zhen A, Liu Z (2010) Improving cucumber tolerance to major nutrients induced salinity by grafting onto Cucurbita ficifolia. Environ Exp Bot 69:32–38

    CAS  Google Scholar 

  • Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–879

    PubMed  CAS  Google Scholar 

  • Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    PubMed  CAS  Google Scholar 

  • Irar S, Brini F, Goday A, Masmoudi K, Pages M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) – a wider perspective of the proteome J. Proteomics 73:1707–1721

    PubMed  CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of s-nitrosylated proteins. Sci STKE 2001:l1

    Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    CAS  Google Scholar 

  • Janda T, Szalai G, Antunovics Z, Horváth E, Páldi E (2000) Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 45:29–33

    Google Scholar 

  • Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J (2008) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46:997–1006

    PubMed  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    PubMed  CAS  Google Scholar 

  • Kamuro Y, Takaysuto S (1991) Capability for problems of practical uses of brassinosteroids. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity and application, vol 474, ACS Symposium Series. American Chemica Society, Washington, DC, pp 292–297

    Google Scholar 

  • Kang G, Wang C, Sun G, Wang Z (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increase the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170

    PubMed  CAS  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics 8:2514–2530

    PubMed  CAS  Google Scholar 

  • Kihlman BA (1957) The production of chromosome aberrations by cyanide and other heavy metal complexing agents. J Biophys Biochem Cytol 3:363–380

    PubMed  CAS  Google Scholar 

  • Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954

    PubMed  CAS  Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Møller IM (2004) Identification of oxidized proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    PubMed  CAS  Google Scholar 

  • Kubicka E, Zadernowski R (2007) Enhanced jasmonate biosynthesis in plants and possible implications for food quality. Acta Aliment 36:455–469

    CAS  Google Scholar 

  • Kukkola E, Rautio P, Huttune S (2000) Stress indications in copper- and nickel-exposed Scots pine seedlings. Environ Exp Bot 43:197–210

    PubMed  CAS  Google Scholar 

  • Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C (2006) Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isoenzymes in peanut seedlings. Biol Plant 50:219–226

    CAS  Google Scholar 

  • Lage-Pinto F, Oliveira JG, da Cunha M, Souza CMM, Rezende CE, Azevedo RA, Vitória AP (2008) Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environ Exp Bot 64:307–313

    CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    PubMed  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    PubMed  CAS  Google Scholar 

  • Li F, Shi J, Shen C, Chen G, Hu S, Chen Y (2009a) Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 71:251–263

    PubMed  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009b) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    PubMed  CAS  Google Scholar 

  • Li J, He M, Han W, Gu Y (2009c) Availability and mobility of heavy metal fractions related to the characteristics of the coastal soils developed from alluvial deposits. Environ Monit Assess 158:459–469

    PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    PubMed  CAS  Google Scholar 

  • Liu J, Qian M, Cai G, Zhu Q, Wong MH (2007) Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health 29:189–195

    PubMed  CAS  Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu NLH, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    PubMed  CAS  Google Scholar 

  • Magalhães CS, Arruda MAZ (2007) Sample preparation for metalloprotein analysis: a case study using horse chestnuts. Talanta 71:1958–1963

    PubMed  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    PubMed  CAS  Google Scholar 

  • Martínez-Alcalá I, Clemente R, Bernal MP (2009) Metal availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Pollut 201:283–293

    Google Scholar 

  • Mazorra LM, Nunez M, Hechavarria M, Coll F, Sanchez-Blanco MJ (2002) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593–596

    CAS  Google Scholar 

  • McCutcheon SC, Jorgensen SE (2008) Phytoremediation. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier Science BV, Amsterdam, Netherlands, pp 2751–2766

    Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    PubMed  CAS  Google Scholar 

  • Mishra A, Chordhuri MA (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    CAS  Google Scholar 

  • Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:1360–1385

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Moffat AS (2002) Finding new ways to protect drought-stricken plants. Science 296:1226–1229

    PubMed  CAS  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  Google Scholar 

  • Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735

    PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100:358–363

    PubMed  CAS  Google Scholar 

  • Mora ML, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89

    CAS  Google Scholar 

  • Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138

    PubMed  CAS  Google Scholar 

  • Mousavi A, Hotta Y (2005) Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotech 120:169–174

    CAS  Google Scholar 

  • Muñoz AS, Kubachka K, Wrobel K, Corona FG, Yathavakilla SKV, Mutlu S, Atici Ö, Nalbantoglu B (2009) Effect of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biol Plant 53:334–338

    Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure and abiotic stress. J Exp Bot 59:165–176

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Schmetz E, Block A, Miersch O, Wasternach C, Jones JB, Klee HJ (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133:1181–1189

    PubMed  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–54

    CAS  Google Scholar 

  • Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 285:9190–9201

    PubMed  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    PubMed  CAS  Google Scholar 

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    PubMed  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Pang QY, Chen SX, Dai SJ, Chen YZ, Wang Y, Yan XF (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parra-Lobato MC, Fernandez-Garcia N, Olmos E, Alvarez-Tinaut MC, Gomez-Jimenez MC (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exp Bot 66:9–17

    CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    CAS  Google Scholar 

  • Pedrero Z, Encinar JR, Madrid Y, Cámara C (2007) Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography–inductively coupled plasma mass spectrometry and [77Se]selenomethionine selenium oxide spikes. J Chromatogr A 1139:247–253

    PubMed  CAS  Google Scholar 

  • Peng HY, Yang X (2006) Analytical techniques for metal-organic ligand and metallomics study. Chin J Anal Chem 34:1190–1196

    CAS  Google Scholar 

  • Perez-Torres E, Paredes M, Polanco V, Becerra V (2009) Gene expression analysis: a way to study tolerance to abiotic stresses in crops species. Chilean J Agric Res 69:260–269

    Google Scholar 

  • Porcal P, Koprivnjak JF, Molot LA, Dillon PJ (2009) Humic substances part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Environ Sci Pollut Res Int 16:714–726

    PubMed  CAS  Google Scholar 

  • Porubleva L, Velden KV, Kothari S, Oliver DJ, Chitnis PR (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22:1724–1738

    PubMed  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2008) Red cabbage extract limits copper stress injury in meristematic cells of Vicia faba. Acta Physiol Plant 30:481–491

    CAS  Google Scholar 

  • Posmyk MM, Janas KM, Kontek R (2009) Red cabbage anthocyanin extract alleviates copper-induced cytological disturbances in plant meristematic tissue and human lymphocytes. Biometals 22:479–490

    PubMed  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants. From biomolecules to ecosystems, 2nd edn. Narosa Publishing House, New Dehli

    Google Scholar 

  • Prasad MNV, Strzalka K (eds) (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, 460p

    Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA get-blot analyses. Plant Physiol 133:1755–1767

    PubMed  CAS  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    PubMed  CAS  Google Scholar 

  • Rodríguez-Celma J, Rellán-Álvarez R, Abadía A, Abadía J, López-Millán AF (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteomics 73:1694–1706

    PubMed  Google Scholar 

  • Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130

    PubMed  CAS  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124:465–475

    CAS  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    PubMed  CAS  Google Scholar 

  • Salgado SG, Nieto MAQ, Simón MMB (2006) Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography–hydride generation–inductively coupled plasma-atomic emission spectrometry. J Chromatogr A 1129:54–60

    Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res Commun 12–13(Pt 2):851–858

    PubMed  Google Scholar 

  • Santala KR, Ryser P (2009) Influence of heavy-metal contamination on plant response to water availability in White birch, Betula papyrifera. Environ Exp Bot 64:334–340

    Google Scholar 

  • Savvas D, Papastavrou D, Ntatsi G, Ropokis A, Olympios C, Hartmann H, Schwarz D (2009) Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Hortscience 44:1178–1982

    Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant response to abio-tic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  CAS  Google Scholar 

  • Seggara G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Google Scholar 

  • Seo H, Li J, Lee S, Yu J, Kim K, Lee S, Lee I, Paek N (2007) The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol Cells 24:185–193

    PubMed  CAS  Google Scholar 

  • Seth CS, Misra V, Chauhan LKS, Singh RR (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicol Environ Saf 71:711–716

    PubMed  CAS  Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178:130–139

    CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043

    CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    PubMed  CAS  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4343

    PubMed  CAS  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372

    PubMed  CAS  Google Scholar 

  • Soren KR, Ali K, Tyagi V, Tyagi A (2010) Recent advances in molecular breeding of drought tolerance in rice (Oryza sativa L.). Indian J Biotechnol 9:233–251

    CAS  Google Scholar 

  • Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138:360–371

    PubMed  CAS  Google Scholar 

  • Sugiyama M, Ae N, Arao T (2007) Role of roots in differences in seed cadmium concentration among soybean cultivars – proof by grafting experiment. Plant Soil 295:1–11

    CAS  Google Scholar 

  • Sung DL, Kim TH, Komives EA, Mendonza-Cózatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–813

    PubMed  CAS  Google Scholar 

  • Sussulini A, Garcia JS, Arruda MAZ (2007) Microwave-assisted decomposition of polyacrylamide gels containing metalloproteins using mini-vials: an auxiliary strategy for metallomics studies. Anal Biochem 361:146–148

    PubMed  CAS  Google Scholar 

  • Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56

    PubMed  CAS  Google Scholar 

  • Taşgın E, Atici Ö, Nalbantoglu B, Popova LP (2006) Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67:710–715

    PubMed  Google Scholar 

  • Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    PubMed  CAS  Google Scholar 

  • Tolrà R, Pongrac P, Poschenrieder C, Vogel-Mikus K, Regvar M, Barcelo J (2006) Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant Soil 288:333–341

    Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    PubMed  CAS  Google Scholar 

  • Turnbull CGN, Booker JPB, Leyser HMO (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262

    PubMed  CAS  Google Scholar 

  • Ünceer H, Ayaz S, Beyazğlum O, Şentürk E (2003) Cytogenetic effects of copper chloride on the root tip cells of Helianthus annuus L. Turk J Biol 27:43–46

    Google Scholar 

  • Upadhyay RK, Panda KS (2009) Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). C R Biol 332:623–632

    PubMed  CAS  Google Scholar 

  • Uquillas C, Letelier I, Blanco F, Jordana X, Holuigue L (2004) NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol Plant Microbe Interact 17:34–42

    PubMed  CAS  Google Scholar 

  • Válega M, Lima AIG, Figueira EMAP, Pereira E, Pardal MA, Duarte AC (2009) Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure. Chemosphere 74:530–536

    PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    PubMed  CAS  Google Scholar 

  • Visioli G, Marmiroli M, Marmiroli N (2010) Two-dimensional liquid chromatography technique coupled with mass spectrometry analysis to compare the proteomic response to cadmium stress in plants. J Biomed Biotechnol 201:10p

    Google Scholar 

  • Vitória AP, da Cunha M, Azevedo RA (2006) Ultrastructural changes of radish leaf exposed to cadmium. Environ Exp Bot 58:47–52

    Google Scholar 

  • Wang HH, Feng T, Peng XX, Yan ML, Zhou PL, Tang XK (2009a) Ameliorative effects of brassinosteroid on excess manganese-induced oxidative stress in Zea mays L. leaves. Agric Sci China 8:1063–1074

    CAS  Google Scholar 

  • Wang L, Zhou Q, Huang X (2009b) Photosynthetic responses to heavy metal terbium stress in horseradish leaves. Chemosphere 77:19–25

    Google Scholar 

  • Wójcik M, Pawlikowska-Palenga B, Tukiendorf A (2009) Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GHS level and Cu excess. Russian J Plant Physiol 56:820–829

    Google Scholar 

  • Wu WH, Song XS, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chiling. Photosynthetica 46:581–588

    Google Scholar 

  • Xu Z, Chen S, Huang W, Fang G, Pingzhu H, Wang S (2009) Study on an on-line molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography for separation and determination of trace estrone in environment. Anal Bioanal Chem 393:1273–1279

    PubMed  CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogen-related proteins and virus resistance in tobacco. Planta 193:372–376

    CAS  Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749

    PubMed  CAS  Google Scholar 

  • Yang J, Ma Z, Ye Z, Guo X, Qiu R (2010) Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. J Environ Sci 22:696–702

    CAS  Google Scholar 

  • Zhang LR, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111

    PubMed  CAS  Google Scholar 

  • Zhen A, Bie Z, Huang Y, Liu Z, Li Q (2010) Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci Plant Nutr 56:263–271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cia, M.C., Capaldi, F.R., Carvalho, R.F., Gratão, P.L., Azevedo, R.A. (2012). New Approaches to Study Metal-Induced Stress in Plants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_19

Download citation

Publish with us

Policies and ethics