Skip to main content

Breast Cancer Stem Cells

  • Chapter
  • First Online:
Advances in Cancer Stem Cell Biology

Abstract

We now know that some solid neoplasms, such as breast cancer, contain a ­subpopulation of cells with stem cell properties. This subpopulation, also known as cancer stem cells (CSC), could be responsible for the malignant transformation and the progression of the disease (Wicha et al. 2006). This hypothesis could be useful in clinical practice, not only explaining a lot of the remaining questions about the disease behavior, solving the frequent failure to conventional therapies, and defining the future therapeutic approach with the development of novel targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003)Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001) The evolving concept of a stem cell: entity or function? Cell 105: 829–841

    Article  PubMed  CAS  Google Scholar 

  • Bunting KD, Lindahl R, Townsend AJ. (1994). Oxazaphosphorine-specific resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. J Biol Chem 269:23197–23203

    PubMed  CAS  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F, et al. (2009) Breast cancer cells lines contain functional cancer stem cells with Metastatic Capacity and a Distinct Molecular signature. Cancer Res 69:1302–1313

    Article  PubMed  CAS  Google Scholar 

  • Cicalese, A., Bonizzi, G., Pasi, C.E., et al (2009). The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 20:1083–1095

    Article  Google Scholar 

  • Cobaleda C, Cruz JJ, González-Sarmiento R, Sánchez-García I, Pérez-Losada J (2008). The Emerging Picture of Human Breast Cancer: as a Stem Cell-based Disease. Stem Cell Rev 4:67–79

    Article  PubMed  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, et al. (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120 (2): 485–497

    Article  Google Scholar 

  • Gonzalez-Sarmiento, R. and Perez-Losada, J. (2008) Breast Cancer as a Stem Cell Disease. Current Stem Cell Research and Therapy 3, 55–65

    Article  PubMed  CAS  Google Scholar 

  • Harrison H, Farmie G, Brennan KR, Clarke RB. (2010a) Breast Cancer Stem Cells: something out of notching?. Cancer Res 2010; 70 (22): 8973–8976

    Article  PubMed  CAS  Google Scholar 

  • Harrison H, Farnie, G, Howell SJ, et al. (2010b) Regulation of breast cancer stem cell activity by signalling through the Notch4 receptor. Cancer Res 70 (2): 709–718

    Article  PubMed  CAS  Google Scholar 

  • Hatsell S, Frost AR. (2007)Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 12:163–173

    Article  PubMed  Google Scholar 

  • Holst CR, Nuovo GJ, Esteller M, et al. (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63: 1596–1601

    PubMed  CAS  Google Scholar 

  • Kim M, Turnquist H, Jackson J, et al. (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28

    PubMed  CAS  Google Scholar 

  • Knoblich JA (2010). Asymmetric cell division: recent developments and their implications for tumour biology. Nat Rev Mol Cell Biol 11: 849–860

    Article  PubMed  CAS  Google Scholar 

  • Korkaya H and Wicha M. (2009) Her-2, Notch and breast cancer stem cells. Clin Cancer Res 15: 1845–46

    Article  PubMed  CAS  Google Scholar 

  • Korkaya H, Paulson A, Iovino F, et al. (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene27:6120–6130

    Google Scholar 

  • Li X, Lewis MT, Huang J, et al. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Welm B, Podsypanina K, et al. (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858

    Article  PubMed  CAS  Google Scholar 

  • Liu S and Wicha M. (2010) Targeting breast cancer stem cells. JCO 28; 25: 4006–4012

    Google Scholar 

  • Liu S, Dontu G, Mantle ID, et al. (2006). Hedgehog signaling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  CAS  Google Scholar 

  • Liu S, GinestierC, Ou SJ, Clouthier SG, Patel S, et al. (2011) Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Res 7 (2): 814–824

    Google Scholar 

  • Liu S, Ginestier C, Charafe-Jauffret E, et al. (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105:1680–1685

    Article  PubMed  CAS  Google Scholar 

  • Magnifico A, Albano L, Campaner S, et al. (2009) Tumor-initiating cells of Her2-positive carcinoma cell lines express the highest oncoprotein levels and are trastuzumab sensitive. Clin Cancer Res 15: 2010–21

    Article  PubMed  CAS  Google Scholar 

  • Marcato P, Dean CA, Araslanova Ret al. (2011) Aldehyde Dehydrogenase Activity of Breast Cancer Stem Cells is Primarily Due to Isoform ALDH1A3 and Its Expression is Predictive of Metastasis. Stem Cells 1; 29: 32–45

    Google Scholar 

  • McDermott SP, Wicha M. (2010)Targeting breast cancer stem cells. Mol Oncol 4: 404–419

    Article  PubMed  CAS  Google Scholar 

  • Mego M, Mani SA and Cristofanilli M. (2010) Molecular mechanisms of metastasis in breast cancer – clinical applications. Nat Rev Clin Oncol 7: 693–701

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K, Kim S, Tanei T, et al. (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100: 1062–1068

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff BJ, Osborne BA, Miele L. (2003) Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22:6598–6608

    Article  PubMed  CAS  Google Scholar 

  • Patel SA, Ndabahaline A, Lim PK, Milton R, Rameshwar P. (2010) Challenges in the development of future for breast cancer stem cells. Breast Cancer 2: 1–11

    PubMed  Google Scholar 

  • Pece S,Tosoni D, Confalonieri S, et al (2010). Biological and Molecular Heterogeneity of Breast Cancers Correlates with Their Cancer Stem Cell Content. Cell 140: 62–73

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F. (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  • Polyak K (2007). Breast cancer stem cells: a case of mistaken identity?. Stem Cell Rev 3 (2):107–9

    Article  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  • Prat A, Perou CM (2011). Deconstructing the molecular portraits of breast cancer. Mol Oncol. 5(1):5–23

    Article  PubMed  CAS  Google Scholar 

  • Resetkova E, Reis-Filho J, Jain R., et al. (2010) Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat 123(1):97–108

    Article  PubMed  Google Scholar 

  • Russo J, Snider K, Pereira JS, Russo IH (2010). Estrogen induced breast cancer is the result in the disruption of the asymmetric cell division of the stem cell. Horm Mol Biol Clin INvestig 1 (2): 53–65

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Tay LK, Russo IH (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Research and Treatment 2: 5–73

    Article  PubMed  CAS  Google Scholar 

  • Saal LH, Gruvberger-Saal SK, Persson C, et al. (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40:102–107

    Article  PubMed  CAS  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, et al. (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  PubMed  CAS  Google Scholar 

  • Stingl J and Caldas C (2007). Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, et al. (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  • Tanei T, Morimoto K, Shimazu K, et al. (2009) Association of Breast Cancer Stem Cells Identified by Aldehyde Dehydrogenase 1 Expression with Resistance to Sequential Paclitaxel and Epirubicin-Based Chemotherapy for Breast Cancers. Clin Cancer Res 15(12): 4234–4241

    Article  PubMed  CAS  Google Scholar 

  • Vaillant F, Asselin-Labat ML, Shackleton M, et al. (2007) The emerging picture of the mouse mammary stem cell. Stem Cell Rev 3: 114–123

    Article  PubMed  Google Scholar 

  • Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, et al. (2007). Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101

    Article  PubMed  CAS  Google Scholar 

  • Wang W, El-Deiry WS. (2008) Restoration of p53 to limit tumor growth. Curr Opin Oncol 20:90–96

    Article  PubMed  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006). Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66:1883–1890

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Rodríguez Salas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Salas, N.R., González, E.G., Amat, C.G. (2012). Breast Cancer Stem Cells. In: Scatena, R., Mordente, A., Giardina, B. (eds) Advances in Cancer Stem Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0809-3_9

Download citation

Publish with us

Policies and ethics