Skip to main content

Immunomodulatory Functions of Cancer Stem Cells

  • Chapter
  • First Online:
Advances in Cancer Stem Cell Biology

Abstract

Cancer stem cells (CSCs), which are operationally defined as tumor cell fractions that possess the selective capacity to drive tumorigenesis through self-renewal and differentiation, have been identified in a growing number of tumor entities. Importantly, CSCs have been linked to neoplastic progression and therapy resistance in cancer patients, and proof-of-concept has been established that CSC targeting can inhibit experimental tumor growth. However, the mechanisms by which CSCs fuel the tumorigenic process are only beginning to be unraveled. Recent evidence suggests that CSCs possess immunomodulatory capabilities that may enable them to evade host anticancer immunity to promote tumorigenicity. CSC immunological functions include evasion from immune clearance, induction of clonal anergy or deletion, and activation of regulatory immune cells. Strikingly, such novel CSC properties parallel established immunoregulatory pathways of physiologic stem cells and known mechanisms of tumor immunotherapy resistance. Accordingly, future cancer immunotherapeutic protocols that consider CSCs and their immunomodulatory functions hold the promise to achieve more durable responses in tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab, Z., Li, W. P., Osanto, S., Darrow, T. L., Hessling, J., Vervaert, C. E., Burrascano, M., Barber, J. & Seigler, H. F. (1994), Transduction of human melanoma cells with interleukin-2 gene reduces tumorigenicity and enhances host antitumor immunity: a nude mouse model. Cell Immunol 159:26–39.

    PubMed  CAS  Google Scholar 

  • Aggarwal S & Pittenger MF (2005), Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–22.

    PubMed  CAS  Google Scholar 

  • Ahmadzadeh M, Felipe-Silva A, Heemskerk B, Powell DJ Jr, Wunderlich JR, Merino MJ & Rosenberg SA (2008), FOXP3 expression accurately defines the population of intratumoral regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood 112:4953–60.

    PubMed  CAS  Google Scholar 

  • Ahmadzadeh M & Rosenberg SA (2006), IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–14.

    PubMed  CAS  Google Scholar 

  • Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, Grossman RG, Heslop HE & Gottschalk S (2010), HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16:474–85.

    PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ & Clarke MF (2003), Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8.

    PubMed  CAS  Google Scholar 

  • Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, et al. (2002), Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–16.

    PubMed  CAS  Google Scholar 

  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, et al. (2005), CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–601.

    PubMed  CAS  Google Scholar 

  • Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F & Garrido F (2007), Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 601:123–31.

    PubMed  Google Scholar 

  • Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, et al. (1999), High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–16.

    PubMed  CAS  Google Scholar 

  • Atkins MB, Sparano J, Fisher RI, Weiss GR, Margolin KA, Fink KI, Rubinstein L, Louie A, Mier JW, Gucalp R, et al. (1993), Randomized phase II trial of high-dose interleukin-2 either alone or in combination with interferon alfa-2b in advanced renal cell carcinoma. J Clin Oncol 11:661–70.

    PubMed  CAS  Google Scholar 

  • Attia P, Maker AV, Haworth LR, Rogers-Freezer L & Rosenberg SA (2005), Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–92.

    PubMed  CAS  Google Scholar 

  • Bai Y, Liu J, Wang Y, Honig S, Qin L, Boros P & Bromberg JS (2002), L-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J Immunol 168:1579–89.

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB & Rich JN (2008), Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–8.

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD & Rich JN (2006a), Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–60.

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD & Rich JN (2006b), Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–8.

    PubMed  CAS  Google Scholar 

  • Barclay AN & Brown MH (2006), The SIRP family of receptors and immune regulation. Nat Rev Immunol 6:457–64.

    PubMed  CAS  Google Scholar 

  • Barker N, Ridgway RA, Van Es JH, Van De Wetering M, Begthel H, Van Den Born M, Danenberg E, Clarke AR, Sansom OJ & Clevers H (2009), Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–11.

    PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL & Spies T (1999), Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–9.

    PubMed  CAS  Google Scholar 

  • Becker JC, Brabletz T, Czerny C, Termeer C & Brocker EB (1993), Tumor escape mechanisms from immunosurveillance: induction of unresponsiveness in a specific MHC-restricted CD4+ human T cell clone by the autologous MHC class II+ melanoma. Int Immunol 5:1501–8.

    PubMed  CAS  Google Scholar 

  • Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON & Baltimore D (1986), The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233:212–4.

    PubMed  CAS  Google Scholar 

  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E & Rachmilewitz J (2005), Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–9.

    PubMed  CAS  Google Scholar 

  • Biernacki MA, Marina O, Zhang W, Liu F, Bruns I, Cai A, Neuberg D, Canning CM, Alyea EP, Soiffer RJ, et al. (2010), Efficacious immune therapy in chronic myelogenous leukemia (CML) recognizes antigens that are expressed on CML progenitor cells. Cancer Res 70:906–15.

    PubMed  CAS  Google Scholar 

  • Bonnet D & Dick JE (1997), Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–7.

    PubMed  CAS  Google Scholar 

  • Bonneville M & Scotet E (2006), Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18:539–46.

    PubMed  CAS  Google Scholar 

  • Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, et al. (2010), Phase I Study of Single-Agent Anti-Programmed Death-1 (MDX-1106) in Refractory Solid Tumors: Safety, Clinical Activity, Pharmacodynamics, and Immunologic Correlates. J Clin Oncol 28:3167–75.

    Google Scholar 

  • Brocker EB, Suter L & Sorg C (1984), HLA-DR antigen expression in primary melanomas of the skin. J Invest Dermatol 82:244–7.

    PubMed  CAS  Google Scholar 

  • Brown CE, Starr R, Martinez C, Aguilar B, D’Apuzzo M, Todorov I, Shih CC, Badie B, Hudecek M, Riddell SR, et al. (2009), Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69:8886–93.

    PubMed  CAS  Google Scholar 

  • Bruce WR & Van Der Gaag H (1963), A Quantitative Assay For The Number Of Murine Lymphoma Cells Capable Of Proliferation In Vivo. Nature 199:79–80.

    PubMed  CAS  Google Scholar 

  • Bubenik J (2003), Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep 10:2005–8.

    PubMed  CAS  Google Scholar 

  • Burnet M (1957a), Cancer; a biological approach. I. The processes of control. Br Med J 1:779–86.

    Google Scholar 

  • Burnet M (1957b), Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1:841–7.

    PubMed  CAS  Google Scholar 

  • Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, Valero P, Camacho FM & Garrido F (2007), HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 56:709–17.

    PubMed  CAS  Google Scholar 

  • Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F & Cabrera T (2008), Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–47.

    PubMed  CAS  Google Scholar 

  • Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, Cavinato RA, Todeschini M, Solini S, Sonzogni A, et al. (2008), Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–46.

    PubMed  CAS  Google Scholar 

  • Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K, Strombeck B, Garwicz S, Bekassy AN, Schmiegelow K, et al. (2005), Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–7.

    PubMed  CAS  Google Scholar 

  • Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, Van De Rijn M, et al. (2009), Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106:14016–21.

    PubMed  CAS  Google Scholar 

  • Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, Gurney A, Lewicki J & Clarke MF (2008), Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26:364–71.

    PubMed  CAS  Google Scholar 

  • Clark RA, Huang SJ, Murphy GF, Mollet IG, Hijnen D, Muthukuru M, Schanbacher CF, Edwards V, Miller DM, Kim JE, et al. (2008), Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205:2221–34.

    PubMed  CAS  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL & Wahl GM(2006), Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–44.

    PubMed  CAS  Google Scholar 

  • Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ & Blair A (2004), Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104:2919–25.

    PubMed  CAS  Google Scholar 

  • Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS & Blair A (2007), Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109:674–82.

    PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al. (2004), Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–9.

    PubMed  CAS  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al. (2007), Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–63.

    PubMed  CAS  Google Scholar 

  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, et al. (2005), Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–33.

    PubMed  CAS  Google Scholar 

  • Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C, Quintanilla-Martinez L, Kakadia P, Kuchenbauer F, Ahmed F, et al. (2006), Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 10:363–74.

    PubMed  CAS  Google Scholar 

  • Di Ianni M, Del Papa B, De Ioanni M, Moretti L, Bonifacio E, Cecchini D, Sportoletti P, Falzetti F & Tabilio A (2008), Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–18.

    PubMed  Google Scholar 

  • Di Tomaso T, Mazzoleni S, Wang E, Sovena G, Clavenna D, Franzin A, Mortini P, Ferrone S, Doglioni C, Marincola FM, et al. (2010), Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res 16:800–13.

    PubMed  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM & Raulet DH (2001), Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–71.

    PubMed  CAS  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al. (2009), Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–3.

    PubMed  CAS  Google Scholar 

  • Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C & Noel D (2007), Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–32.

    PubMed  CAS  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D & Jorgensen C (2003), Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–44.

    PubMed  CAS  Google Scholar 

  • Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G, Tamura H, Driscoll CL & Chen L (2003), Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–70.

    PubMed  CAS  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. (2002), Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800.

    PubMed  CAS  Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb, Z, et al. (2008), HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–20.

    PubMed  CAS  Google Scholar 

  • Du W, Wong FS, Li MO, Peng J, Qi H, Flavell RA, Sherwin R & Wen L (2006), TGF-beta signaling is required for the function of insulin-reactive T regulatory cells. J Clin Invest 116:1360–70.

    PubMed  CAS  Google Scholar 

  • Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, et al. (2001), Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–73.

    PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ & Schreiber R D (2002), Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–8.

    PubMed  CAS  Google Scholar 

  • Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, et al. (2008), Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428.

    PubMed  Google Scholar 

  • Fadok VA, Bratton DL & Henson PM (2001), Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 108:957–62.

    PubMed  CAS  Google Scholar 

  • Flaherty LE, Atkins M, Sosman J, Weiss G, Clark JI, Margolin K, Dutcher J, Gordon MS, Lotze M, Mier J, et al. (2001), Outpatient biochemotherapy with interleukin-2 and interferon alfa-2b in patients with metastatic malignant melanoma: results of two phase II cytokine working group trials. J Clin Oncol 19:3194–202.

    PubMed  CAS  Google Scholar 

  • Fong L & Small EJ (2008), Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 26:5275–83.

    PubMed  CAS  Google Scholar 

  • Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W & Frank MH (2005), ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–33.

    PubMed  CAS  Google Scholar 

  • Frank NY, Schatton T & Frank MH (2010), The therapeutic promise of the cancer stem cell concept. J Clin Invest 120:41–50.

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz, LJ, Malenkovich N, Okazaki T, Byrne MC, et al. (2000), Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–34.

    PubMed  CAS  Google Scholar 

  • Gao Q, Wang, XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, et al. (2009), Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15:971–9.

    PubMed  CAS  Google Scholar 

  • Gorelik L & Flavell RA (2001), Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–22.

    PubMed  CAS  Google Scholar 

  • Grulich AE, Van Leeuwen MT, Falster MO & Vajdic CM (2007), Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67.

    PubMed  Google Scholar 

  • Gupta PB, Chaffer CL & Weinberg RA (2009a), Cancer stem cells: mirage or reality? Nat Med 15:1010–2.

    PubMed  CAS  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA & Lander ES (2009b), Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–59.

    PubMed  CAS  Google Scholar 

  • Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, et al. (1996), Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–6.

    PubMed  CAS  Google Scholar 

  • Hallermalm K, De Geer A, Kiessling R, Levitsky V & Levitskaya J (2004), Autocrine secretion of Fas ligand shields tumor cells from Fas-mediated killing by cytotoxic lymphocytes. Cancer Res 64:6775–82.

    PubMed  CAS  Google Scholar 

  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, et al. (2007), Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–5.

    PubMed  CAS  Google Scholar 

  • Hamburger AW & Salmon SE (1977), Primary bioassay of human tumor stem cells. Science 197:461–3.

    PubMed  CAS  Google Scholar 

  • Hanahan D & Weinberg RA (2000), The hallmarks of cancer. Cell 100:57–70.

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Inoue A, Muraoka M, Yamanouchi J, Miyazaki T & Yasukawa M (2007), Therapy for pneumonitis and sialadenitis by accumulation of CCR2-expressing CD4+CD25+ regulatory T cells in MRL/lpr mice. Arthritis Res Ther 9:R15.

    PubMed  Google Scholar 

  • Held MA, Curley DP, Dankort D, McMahon M, Muthusamy V & Bosenberg MW (2010), Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res 70:388–97.

    PubMed  CAS  Google Scholar 

  • Herfs M, Herman L, Hubert P, Minner F, Arafa M, Roncarati P, Henrotin Y, Boniver J & Delvenne P (2009), High expression of PGE2 enzymatic pathways in cervical (pre)neoplastic lesions and functional consequences for antigen-presenting cells. Cancer Immunol Immunother 58:603–14.

    PubMed  CAS  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ & Heeschen C (2007), Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–23.

    PubMed  CAS  Google Scholar 

  • Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Et Al. (2005), Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–96.

    PubMed  CAS  Google Scholar 

  • Hodi FS, O’Day SJ, Mcdermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. (2010), Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med 363:711–23.

    Google Scholar 

  • Hogquist KA, Baldwin TA & Jameson SC (2005), Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–82.

    PubMed  CAS  Google Scholar 

  • Hombach AA, Kofler D, Hombach A, Rappl G & Abken H (2007), Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 179:7924–31.

    PubMed  CAS  Google Scholar 

  • Hori S, Nomura T & Sakaguchi S (2003), Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–61.

    PubMed  CAS  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, et al. (2004), MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–96.

    PubMed  CAS  Google Scholar 

  • Inge TH, Hoover SK, Susskind BM, Barrett SK & Bear HD (1992), Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1. Cancer Res 52:1386–92.

    PubMed  CAS  Google Scholar 

  • Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, et al. (2007), Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–21.

    PubMed  CAS  Google Scholar 

  • Iwai Y, Terawaki S & Honjo T (2005), PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 17:133–44.

    PubMed  CAS  Google Scholar 

  • Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, et al. (2000), Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198–203.

    PubMed  CAS  Google Scholar 

  • Jaiswal S, Chao MP, Majeti R & Weissman IL (2010), Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31:212–9.

    Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, Van Rooijen N & Weissman IL (2009), CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–85.

    PubMed  CAS  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, et al. (2004), Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–67.

    PubMed  CAS  Google Scholar 

  • Jenkins MK, Taylor PS, Norton SD & Urdahl KB (1991), CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–6.

    PubMed  CAS  Google Scholar 

  • Jensen JB & Parmar M (2006), Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–61.

    PubMed  CAS  Google Scholar 

  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD & Mao N (2005), Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120-6.

    PubMed  CAS  Google Scholar 

  • Jones E, Dahm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V & Gallimore A (2002), Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immu 2:1.

    Google Scholar 

  • Kappler JW, Roehm N & Marrack P (1987), T cell tolerance by clonal elimination in the thymus. Cell 49:273–80.

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Dang N, Wang X, Tupesis J, Robbins PF, Wang RF, Wunderlich JR, Yannelli JR & Rosenberg SA (2000), Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J Immunother 23:17–27.

    PubMed  CAS  Google Scholar 

  • Kawasaki BT, Mistree T, Hurt EM, Kalathur M & Farrar WL (2007), Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 364:778–82.

    PubMed  CAS  Google Scholar 

  • Khong HT, Wang QJ & Rosenberg SA (2004), Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother 27:184–90.

    PubMed  Google Scholar 

  • Kim E & Deppert W (2004), Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem 93:878–86.

    PubMed  CAS  Google Scholar 

  • Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH & Gogas HJ (2008), Next generation of immunotherapy for melanoma. J Clin Oncol 26:3445–55.

    Google Scholar 

  • Krambeck AE, Thompson RH, Dong H, Lohse CM, Park ES, Kuntz SM, Leibovich BC, Blute ML, Cheville JC & Kwon ED (2006), B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci USA 103:10391–6.

    PubMed  CAS  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, et al. (2006), Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–22.

    PubMed  CAS  Google Scholar 

  • Kroczek RA, Mages HW & Hutloff A (2004), Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–7.

    PubMed  CAS  Google Scholar 

  • Kuipers H, Muskens F, Willart M, Hijdra D, Van Assema FB, Coyle AJ, Hoogsteden HC & Lambrecht BN (2006), Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 36:2472–82.

    PubMed  CAS  Google Scholar 

  • Lahn M, Kloeker S & Berry BS (2005), TGF-beta inhibitors for the treatment of cancer. Expert Opin Investig Drugs 14:629–43.

    PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA & Dick JE (1994), A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–8.

    PubMed  CAS  Google Scholar 

  • Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB, et al. (2010), Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–32.

    PubMed  CAS  Google Scholar 

  • Le Blanc K & Ringden O (2007), Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–25.

    PubMed  Google Scholar 

  • Le Blanc K, Tammik C, Rosendahl K, Zetterberg E & Ringden O (2003), HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–6.

    PubMed  Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, et al. (1999), Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–85.

    PubMed  CAS  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF & Simeone DM (2007), Identification of pancreatic cancer stem cells. Cancer Res 67:1030–7.

    PubMed  CAS  Google Scholar 

  • Li W, Jian-Jun W, Xue-Feng Z & Feng Z (2010), CD133(+) human pulmonary adenocarcinoma cells induce apoptosis of CD8(+) T cells by highly expressed galectin-3. Clin Invest Med 33:E44-53.

    PubMed  Google Scholar 

  • Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick A, Zhang X, Chamness GC, et al. (2008), Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–9.

    PubMed  CAS  Google Scholar 

  • Li XC, Rothstein DM & Sayegh MH (2009a), Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 229:271–93.

    PubMed  CAS  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al. (2009b), Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–13.

    PubMed  CAS  Google Scholar 

  • Liu J, Lu XF, Wan L, Li YP, Li SF, Zeng LY, Zeng YZ, Cheng LH, Lu YR & Cheng JQ (2004), Suppression of human peripheral blood lymphocyte proliferation by immortalized mesenchymal stem cells derived from bone marrow of Banna Minipig inbred-line. Transplant Proc 36:3272–5.

    PubMed  CAS  Google Scholar 

  • Liu K & Rosenberg SA (2001), Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol 167:6356–65.

    PubMed  CAS  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, et al. (2002), Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–61.

    PubMed  CAS  Google Scholar 

  • Lynch DH (2008), The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 222:277–86.

    PubMed  CAS  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, Van Rooijen N & Weissman IL (2009), CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–99.

    PubMed  CAS  Google Scholar 

  • Mannie MD, Prevost KD & Marinakis CA (1995), Prostaglandin E2 promotes the induction of anergy during T helper cell recognition of myelin basic protein. Cell Immunol 160:132–8.

    PubMed  CAS  Google Scholar 

  • Mapara MY & Sykes M (2004), Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 22:1136–51.

    PubMed  CAS  Google Scholar 

  • Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT & Garcia JV (2006), Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–22.

    PubMed  CAS  Google Scholar 

  • Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, Wong KK, Wang X, Ferrone S & Ioannides CG (2009), Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother 58:1185–94.

    PubMed  CAS  Google Scholar 

  • Miyatake T, Tringler B, Liu W, Liu SH, Papkoff J, Enomoto T, Torkko KC, Dehn DL, Swisher A & Shroyer KR (2007), B7-H4 (DD-O110) is overexpressed in high risk uterine endometrioid adenocarcinomas and inversely correlated with tumor T-cell infiltration. Gynecol Oncol 106:119–27.

    PubMed  CAS  Google Scholar 

  • Moretta A (2002), Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–64.

    PubMed  CAS  Google Scholar 

  • Mugler KC, Singh M, Tringler B, Torkko KC, Liu W, Papkoff J & Shroyer KR (2007), B7-h4 expression in a range of breast pathology: correlation with tumor T-cell infiltration. Appl Immunohistochem Mol Morphol 15:363–70.

    PubMed  CAS  Google Scholar 

  • Namba K, Kitaichi N, Nishida T & Taylor AW (2002), Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J Leukoc Biol 72:946–52.

    PubMed  CAS  Google Scholar 

  • Nathan C & Muller WA (2001), Putting the brakes on innate immunity: a regulatory role for CD200? Nat Immunol 2:17–9.

    PubMed  CAS  Google Scholar 

  • Neuber K & Eidam B (2006), Expression of Fas ligand (CD95L) in primary malignant melanoma and melanoma metastases is associated with overall survival. Onkologie 29:361–5.

    PubMed  CAS  Google Scholar 

  • Nishimura MI, Avichezer D, Custer MC, Lee CS, Chen C, Parkhurst MR, Diamond RA, Robbins PF, Schwartzentruber DJ & Rosenberg SA (1999), MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. Cancer Res 59:6230–8.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y & Sakakura T (1969), Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–5.

    PubMed  CAS  Google Scholar 

  • Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, et al. (2007), Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–7.

    PubMed  CAS  Google Scholar 

  • Nowell PC (1976), The clonal evolution of tumor cell populations. Science 194:23–8.

    PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S & Dick JE (2007), A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–10.

    PubMed  Google Scholar 

  • Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S & Carbone DP (2003), VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–86.

    PubMed  CAS  Google Scholar 

  • Ostroukhova M, Qi Z, Oriss TB, Dixon-Mccarthy B, Ray P & Ray A (2006), Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 116:996–1004.

    PubMed  CAS  Google Scholar 

  • Park CH, Bergsagel DE & Mcculloch EA (1971), Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46:411–22.

    PubMed  CAS  Google Scholar 

  • Parmiani G, De Filippo A, Novellino L & Castelli C (2007), Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol 178:1975–9.

    PubMed  CAS  Google Scholar 

  • Peng W, Wang HY, Miyahara Y, Peng G & Wang RF (2008), Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68:7228–36.

    PubMed  CAS  Google Scholar 

  • Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, et al. (2003), Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–7.

    PubMed  CAS  Google Scholar 

  • Powell DJ Jr, De Vries CR, Allen T, Ahmadzadeh M & Rosenberg SA (2007), Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–47.

    PubMed  CAS  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF & Ailles LE (2007), Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–8.

    PubMed  CAS  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM & Morrison SJ (2008), Efficient tumour formation by single human melanoma cells. Nature 456:593–8.

    PubMed  CAS  Google Scholar 

  • Radhakrishnan S, Nguyen LT, Ciric B, Flies D, Van Keulen VP, Tamada K, Chen L, Rodriguez M & Pease LR (2004), Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res 64:4965–72.

    PubMed  CAS  Google Scholar 

  • Ramsdell F & Fowlkes BJ (1990), Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 248:1342–8.

    PubMed  CAS  Google Scholar 

  • Ramsdell F & Fowlkes BJ (1992), Maintenance of in vivo tolerance by persistence of antigen. Science 257:1130–4.

    PubMed  CAS  Google Scholar 

  • Ramsdell F, Lantz T & Fowlkes BJ (1989), A nondeletional mechanism of thymic self tolerance. Science 246:1038–41.

    PubMed  CAS  Google Scholar 

  • Reuben JM, Lee BN, Li C, Gomez-Navarro J, Bozon VA, Parker CA, Hernandez IM, Gutierrez C, Lopez-Berestein G & Camacho LH (2006), Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 106:2437–44.

    PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF & Weissman IL (2001), Stem cells, cancer, and cancer stem cells. Nature 414:105–11.

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C & De Maria R (2007), Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–5.

    PubMed  CAS  Google Scholar 

  • Risau W (1997), Mechanisms of angiogenesis. Nature 386:671–4.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA (1999), A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281–7.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA & Dudley ME (2008), Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC & Restifo NP (2004), Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–15.

    PubMed  CAS  Google Scholar 

  • Ruiter DJ, Mattijssen V, Broecker EB & Ferrone S (1991), MHC antigens in human melanomas. Semin Cancer Biol 2:35–45.

    PubMed  CAS  Google Scholar 

  • Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y & Quillien V (2007), Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol 81:139–48.

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M & Toda M (1995), Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–64.

    PubMed  CAS  Google Scholar 

  • Scadden DT (2006), The stem-cell niche as an entity of action. Nature 441:1075–9.

    PubMed  CAS  Google Scholar 

  • Schatton T & Frank MH (2008), Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res 21:39–55.

    PubMed  CAS  Google Scholar 

  • Schatton T & Frank MH (2009), Antitumor immunity and cancer stem cells. Ann N Y Acad Sci 1176:154–69.

    PubMed  CAS  Google Scholar 

  • Schatton T, Frank NY & Frank MH (2009), Identification and targeting of cancer stem cells. Bioessays 31:1038–49.

    PubMed  CAS  Google Scholar 

  • Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, et al. (2008), Identification of cells initiating human melanomas. Nature 451:345–9.

    PubMed  CAS  Google Scholar 

  • Schatton T, Schutte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF, et al. (2010), Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 70:697–708.

    PubMed  CAS  Google Scholar 

  • Schuchter LM (2004), Adjuvant interferon therapy for melanoma: high-dose, low-dose, no dose, which dose? J Clin Oncol 22:7–10.

    PubMed  CAS  Google Scholar 

  • Schwartz RH (1990), A cell culture model for T lymphocyte clonal anergy. Science 248:1349–56.

    PubMed  CAS  Google Scholar 

  • Shah S & Qiao L (2008), Resting B cells expand a CD4+CD25+Foxp3+ Treg population via TGF-beta3. Eur J Immunol 38:2488–98.

    PubMed  CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ & Schreiber RD (2001), IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–11.

    PubMed  CAS  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, et al. (2007), Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–73.

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD & Dirks PB (2004), Identification of human brain tumour initiating cells. Nature, 432, 396–401.

    PubMed  CAS  Google Scholar 

  • Sioud M, Mobergslien A, Boudabous A & Floisand Y (2010), Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 71:267–74.

    PubMed  CAS  Google Scholar 

  • Smith TR & Kumar V (2008), Revival of CD8+ Treg-mediated suppression. Trends Immunol 29:337–42.

    PubMed  CAS  Google Scholar 

  • Soria G & Ben-Baruch A (2008), The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267:271–85.

    PubMed  CAS  Google Scholar 

  • Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K & Levitsky HI (2001), Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–7.

    PubMed  CAS  Google Scholar 

  • Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S & Levitsky HI (1999), Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5:780–7.

    PubMed  CAS  Google Scholar 

  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC & Moretta L (2008), Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–33.

    PubMed  CAS  Google Scholar 

  • Staveley-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D & Levitsky H (1998), Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–83.

    PubMed  Google Scholar 

  • Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A & Old LJ (1998), A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187:1349–54.

    PubMed  CAS  Google Scholar 

  • Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH & Galle PR (1996), Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells – a mechanism of immune evasion? Nat Med 2:1361–6.

    PubMed  CAS  Google Scholar 

  • Stumpfova M, Ratner D, Desciak EB, Eliezri YD & Owens DM (2010), The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res 70:2962–72.

    PubMed  CAS  Google Scholar 

  • Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suva D, Clement V, Provero P, Cironi L, et al. (2009), Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 69: 1776–81.

    PubMed  CAS  Google Scholar 

  • Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C & Sherman LA (1997), Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med 185:833–41.

    PubMed  CAS  Google Scholar 

  • Ting CC, Yang SS & Hargrove ME (1984), Induction of suppressor T cells by interleukin 2. J Immunol 133:261–6.

    PubMed  CAS  Google Scholar 

  • Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, et al. (2009), Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 182:7287–96.

    PubMed  CAS  Google Scholar 

  • Tsukahara R, Takeuchi M, Akiba H, Kezuka T, Takeda K, Usui Y, Usui M, Yagita H & Okumura K (2005), Critical contribution of CD80 and CD86 to induction of anterior chamber-associated immune deviation. Int Immunol 17:523–30.

    PubMed  CAS  Google Scholar 

  • Uccelli A, Moretta L & Pistoia V (2008), Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–36.

    Google Scholar 

  • Van Belle P, Rodeck U, Nuamah I, Halpern AC & Elder DE (1996), Melanoma-associated expression of transforming growth factor-beta isoforms. Am J Pathol 148:1887–94.

    PubMed  Google Scholar 

  • Van Der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den Eynde B, Knuth A & Boon T (1991), A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–7.

    PubMed  Google Scholar 

  • Van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, De Gruijl TD, Molenkamp BG, Van Den Eertwegh AJ, Hooijberg E, Van Leeuwen PA, Meijer CJ, et al. (2008), Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer 123:609–15.

    PubMed  Google Scholar 

  • Wahl SM, Swisher J, Mccartney-Francis N & Chen W (2004), TGF-beta: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J Leukoc Biol 76:15–24.

    PubMed  CAS  Google Scholar 

  • Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, et al. (2009), Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27:2393–404.

    PubMed  CAS  Google Scholar 

  • Wang L, Pino-Lagos K, De Vries VC, Guleria I, Sayegh MH & Noelle RJ (2008), Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci USA 105:9331–6.

    PubMed  CAS  Google Scholar 

  • Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, et al. (2010a), Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9:67–78.

    PubMed  CAS  Google Scholar 

  • Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Sawaya R, et al. (2010b), Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 16:461–73.

    PubMed  CAS  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T & Sakaguchi S (2008), CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322, 271–5.

    PubMed  CAS  Google Scholar 

  • Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR & June CH (2002), Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168 :4272–6.

    PubMed  CAS  Google Scholar 

  • Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC & Ohlfest JR (2008), Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 17:173–84.

    PubMed  CAS  Google Scholar 

  • Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J, Konda B, Black KL & Yu JS (2009), Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27:1734–40.

    PubMed  CAS  Google Scholar 

  • Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT & Fan ST (2008), Significance of CD90(+) Cancer Stem Cells in Human Liver Cancer. Cancer Cell 13: 153–66.

    PubMed  CAS  Google Scholar 

  • Yao Y, Wang X, Jin K, Zhu J, Wang Y, Xiong S, Mao Y & Zhou L (2008), B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells. J Neurooncol 89:121–9.

    PubMed  Google Scholar 

  • Yi KH & Chen L (2009), Fine tuning the immune response through B7-H3 and B7-H4. Immunol Rev 229:145–51.

    PubMed  CAS  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al. (2007), let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–23.

    PubMed  CAS  Google Scholar 

  • Zatloukal K, Schneeberger A, Berger M, Schmidt W, Koszik F, Kutil R, Cotten M, Wagner E, Buschle M, Maass G, et al. (1995), Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine. Assessment of critical cellular and molecular parameters. J Immunol 154:3406–19.

    PubMed  CAS  Google Scholar 

  • Zhang C, Zhang J, Wei H & Tian Z (2005), Imbalance of NKG2D and its inhibitory counterparts: how does tumor escape from innate immunity? Int Immunopharmacol, 5, 1099–111.

    PubMed  CAS  Google Scholar 

  • Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH & Nephew KP (2008), Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–20.

    PubMed  CAS  Google Scholar 

  • Zheng G, Wang B & Chen A (2004), The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol 173:2428–34.

    PubMed  CAS  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW & Gilbertson RJ (2009), Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our research is supported by the U.S. National Institutes of Health/National Cancer Institute (grants 1RO1CA113796, 1RO1CA138231, and 2P50CA093683-06A20006 to M. H. Frank). T. Schatton is the recipient of a Postdoctoral Fellowship Award from the American Heart Association Founders Affiliate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schatton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schatton, T., Lin, J.Y., Frank, M.H. (2012). Immunomodulatory Functions of Cancer Stem Cells. In: Scatena, R., Mordente, A., Giardina, B. (eds) Advances in Cancer Stem Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0809-3_18

Download citation

Publish with us

Policies and ethics