Skip to main content

Digital Camera Image Formation: Processing and Storage

  • Chapter
  • First Online:

Abstract

This chapter presents a high-level overview of image formation in a digital camera, highlighting aspects of potential interest in forensic applications. The discussion here focuses on image processing, especially processing steps related to concealing artifacts caused by camera hardware or that tend to create artifacts themselves. Image storage format issues are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams JE Jr, Hamilton JF Jr (2003) Removing chroma noise from digital images by using variable shape pixel neighborhood regions. U.S. Patent 6621937

    Google Scholar 

  2. Adams JE Jr, Hamilton JF Jr (2008) Single-sensor imaging: methods and applications for digital cameras. Chapter, digital camera image processing chain design, 1st edn. CRC Press, Boca Raton, pp 67–103.

    Google Scholar 

  3. Adams JE Jr, Hamilton JF Jr, Hamilton JA (2004) Removing color aliasing artifacts from color digital images. U.S. Patent 6804392

    Google Scholar 

  4. Adams JE Jr, Hamilton JF Jr, Smith CM (2005) Reducing color aliasing artifacts from digital color images. U.S. Patent 6927804

    Google Scholar 

  5. Adams JE Jr, Hamilton JF Jr, Williams FC (2007) Noise reduction in color digital images using pyramid decomposition. U.S. Patent 7257271

    Google Scholar 

  6. Adobe RGB (1998) Color image encoding. Technical report Adobe Systems, Inc., San Jose. http://www.adobe.com/adobergb

  7. Alleysson D, Susstrunk S, Herault J (2005) Linear demosaicing inspired by the human visual system. IEEE Trans Image Process 14(4):439–449

    Article  Google Scholar 

  8. Anderson M, Motta R, Chandrasekar S, Stokes M (1995) Proposal for a standard default color space for the internet: sRGB. Fourth IS&T/SID color imaging conference, In, pp 238–245

    Google Scholar 

  9. Andrews HC, Hunt BR (1977) Digital image restoration. Prentice Hall, Englewood Cliffs

    Google Scholar 

  10. Bae S, Paris S, Durand F (2006) Two-scale tone management for photographic look. ACM Trans. Graph. 25(3):637–645 (2006). http://doi.acm.org/10.1145/1141911.1141935

    Google Scholar 

  11. Baer R (2007) Method and apparatus for removing flicker from images. U.S. Patent 7298401

    Google Scholar 

  12. Bando Y, Nishita T (2007) Towards digital refocusing from a single photograph. In: Proceedings of the 15th Pacific conference on computer graphics and applications, pp 363–372.

    Google Scholar 

  13. Bauschke HH, Hamilton CH, Macklem MS, McMichael JS, Swart NR (2003) Recompression of JPEG images by requantization. IEEE Trans Image Process 12(7):843–849

    Article  Google Scholar 

  14. Bawolek E, Li Z, Smith R (1999) Magenta-white-yellow (MWY) color system for digital image sensor applications. U.S. Patent 5914749

    Google Scholar 

  15. Bayer BE (1976) Color imaging array. U.S. Patent 3971065

    Google Scholar 

  16. Bean J (2003) Cyan-magenta-yellow-blue color filter array. U.S. Patent 6628331

    Google Scholar 

  17. Chang S, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  18. CIE publ. no. 15.2 (1986) Colorimetry. Techical report, CIE

    Google Scholar 

  19. Debevec PE, Malik J (1997) Recovering high dynamic range radiance maps from photographs. ACM SIGGRAPH, In, pp 369–378

    Google Scholar 

  20. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. In: SIGGRAPH ’02: Proceedings of the 29th annual conference on computer graphics and interactive techniques, pp 257–266. ACM, New York, NY, USA. http://doi.acm.org/10.1145/566570.566574

  21. Elad M, Feuer A (1997) Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans Image Process 6(12):1646–1658

    Article  Google Scholar 

  22. Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving decompositions for multi-scale tone and detail manipulation. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pp 1–10. ACM, New York, NY, USA. http://doi.acm.org/10.1145/1399504.1360666

  23. Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344

    Article  Google Scholar 

  24. Finlayson G, Hordley S, HubeL P (2001) Color by correlation: a simple, unifying framework for color constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23(11):1209–1221

    Article  Google Scholar 

  25. Gindele E, Adams JE Jr, Hamilton JF Jr, Pillman BH (2007) Method for automatic white balance of digital images. U.S. Patent 7158174

    Google Scholar 

  26. Gindele EB, Gallagher AC (2001) Method for adjusting the tone scale of a digital image. U.S. Patent 6275605

    Google Scholar 

  27. Giorgianni EJ, Madden TE (2008) Digital color management encoding solutions, 2nd edn. Wiley, New York

    Google Scholar 

  28. Glotzbach J, Schafer R, Illgner K (2001) A method of color filter array interpolation with alias cancellation properties. In: Proceedings of the IEEE International Conference Image Processing, vol 1. pp 141–144

    Google Scholar 

  29. Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  30. Goodwin RM, Gallagher A (1998) Method and apparatus for areas selective exposure adjustment. U.S. Patent 5818975

    Google Scholar 

  31. Gunturk B, Glotzbach J, Altunbasak Y, Schafer R, Mersereau R (2005) Demosaicking: color filter array interpolation. IEEE Signal Process Mag 22(1):44–54

    Article  Google Scholar 

  32. Gupta M, Chen T (2001) Vector color filter array demosaicing. In: Proceedings of the SPIE, vol 4306. pp 374–382

    Google Scholar 

  33. Hamilton JF Jr (2004) Correcting for defects in a digital image taken by an image sensor caused by pre-existing defects in two pixels in adjacent columns of an image sensor. U.S. Patent No. 6741754

    Google Scholar 

  34. Hamilton JF Jr (2005) Correcting defect in a digital image caused by a pre-existing defect in a pixel of an image sensor. U.S. Patent No. 6900836

    Google Scholar 

  35. Hamilton JF Jr, Adams JE Jr (2003) Correcting for chrominance interpolation artifacts. U.S. Patent 6542187

    Google Scholar 

  36. Hamilton JF Jr, Adams JE Jr, Orlicki D (2001) Particular pattern of pixels for a color filter array which is used to derive luminanance and chrominance values. U.S. Patent 6330029B1

    Google Scholar 

  37. Hirakawa K, Parks T (2005) Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans Image Process 14(3):360–369

    Article  Google Scholar 

  38. Hirakawa K, Wolfe P (2007) Spatio-spectral color filter array design for enhanced image fidelity. In: Proceedings of the ICIP, pp II-81-II-84

    Google Scholar 

  39. Huffman DA (1952) A method for the construction of minimum-redundancy codes. Proc Inst Radio Eng 40(9):1098–1101

    Google Scholar 

  40. Hunt R (1987) The reproduction of colour. Fountain Press, England

    Google Scholar 

  41. ISO 12234-2:2001 (2001) Electronic still picture imaging—removable memory—part 2: TIFF/EP image data format

    Google Scholar 

  42. ISO/IEC 14496-10:2003 (2003) Information technology—coding of audio-visual objects—part 10: advanced video coding

    Google Scholar 

  43. ISO/IEC 14496-2:1999 (1999) Information technology—coding of audio-visual objects—part 2: visual

    Google Scholar 

  44. Jain A, Ranganath S (1981) Application of two dimensional spectral estimation in image restoration. In: IEEE International Conference Acoust., Speech, Signal Process (ICASSP), pp 1113–1116

    Google Scholar 

  45. Jain C, Sethuraman S (2008) A low-complexity, motion-robust, spatio-temporally adaptive video de-noiser with in-loop noise estimation. Proceedings of the ICIP, In, pp 557–560

    Google Scholar 

  46. JEITA CP 3451 (2002) Exchangeable image file format for digital still cameras: Exif version 2.2

    Google Scholar 

  47. JEITA CP 3451-1 (2003) Amendment 1 exchangeable image file format for digital still cameras: Exif version 2.21 (amendment to version 2.2)

    Google Scholar 

  48. Kaplinsky M, Subbotin I (2006) Method for mismatch detection between the frequency of illumination source and the duration of optical integration time for image with rolling shutter. U.S. Patent 7142234

    Google Scholar 

  49. Kim HS, Kim BG, Kim CY, Joo YH (2008) Digital photographing apparatus and method for detecting and correcting smear by using the same. U.S. Patent publication no. 2008/0084488 A1

    Google Scholar 

  50. Kim YJ, Oh JJ, Choi BT, Choi SJ, Kim ET (2009) Robust noise reduction using a hierarchical motion compensation in noisy image sequences. In Digest of Technical Papers of the ICCE, pp 1–2

    Google Scholar 

  51. Kimmel R (1999) Demosaicing: image reconstruction from color CCD samples. IEEE Trans Image Process 8(9):1221–1228

    Article  Google Scholar 

  52. Kondo K (2009) Image sensing apparatus, image sensing method, and program. U.S. Patent 7545420

    Google Scholar 

  53. Kumar M, Morales E, Adams JE Jr, Hao W (2009) New digital camera sensor architecture for low light imaging. Proceedings of the ICIP, In, pp 2681–2684

    Google Scholar 

  54. Kumar M, Ramuhalli P (2005) Dynamic programming based multichannel image restoration. In: IEEE International Conference Acoustics, Speech, Signal Process (ICASSP), vol 2. pp 609–612

    Google Scholar 

  55. Kundur D, Hatzinakos D (1996) Blind image deconvolution. IEEE Signal Process Mag 13(3):43–64

    Article  Google Scholar 

  56. Lee H (1986) Method for computing the scene-illuminant chromaticity from specular highlights. J Opt Soc Am A 3:1694–1699

    Article  Google Scholar 

  57. Lee J (1983) Digital image smoothing and the sigma filter. Comput Vis Graph Image Process 24:255–269

    Article  Google Scholar 

  58. Li X, Gunturk B, Zhang L (2008) Image demosaicing: a systematic survey. In: SPIE Conference on VCIP, vol 6822, pp. 68, 221J-68, 221J-15

    Google Scholar 

  59. Liu X, Gamal AE (2001) Simultaneous image formation and motion blur restoration via multiple capture. In: IEEE International conference acoustics, speech, signal process (ICASSP), vol 3. pp 1841–1844

    Google Scholar 

  60. Lu W, Tan YP (2003) Color filter array demosaicking: new method and performance measures. IEEE Trans Image Process 12(10):1194–1210

    Article  Google Scholar 

  61. Lukac R, Plataniotis K (2005) Color filter arrays: design and performance analysis. IEEE Trans Consum Electron 51(4):1260–1267

    Article  Google Scholar 

  62. McCann JJ, McKee SP, Taylor TH (1976) Quantitative studies in retinex theory. Vis Res 16:445–458

    Google Scholar 

  63. Miao L, Qi H, Snyder W (2004) A generic method for generating multispectral filter arrays. In: Proceedings of the ICIP, vol 5. pp 3343–3346

    Google Scholar 

  64. Miyano T (1997) Auto white adjusting device. U.S. Patent 5659357

    Google Scholar 

  65. Miyano T, Shimizu E (1997) Automatic white balance adjusting device. U.S. Patent 5644358

    Google Scholar 

  66. Moghadam A, Aghagolzadeh M, Radha H, Kumar M (2010) Compressive demosaicing. In: Proceedings of the MMSP, pp 105–110

    Google Scholar 

  67. Mukherjee J, Parthasarathi R, Goyal S (2001) Markov random field processing for color demosaicing. Pattern Recognit. Lett. 22(3–4):339–351

    Article  MATH  Google Scholar 

  68. Multiple output sensors seams correction (2009) Technical report application note revision 1.0 MTD/PS-1149, Eastman Kodak image sensor solutions

    Google Scholar 

  69. Ng MK, Bose NK (2003) Mathematical analysis of super-resolution methodology. IEEE Signal Process Mag 20(3):62–74

    Article  Google Scholar 

  70. Ohta YI, Kanade T, Sakai T (1980) Color information for region segmentation. Comput Graph Image Process 13(3):222–241

    Article  Google Scholar 

  71. Okura Y, Tanizoe Y, Miyake T (2009) CCD signal processing device and image sensing device. U.S. Patent publication no. 2009/0147108 A1

    Google Scholar 

  72. Park SG, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36

    Article  Google Scholar 

  73. Parulski KA, Reisch R (2008) Single-sensor imaging: methods and applications for digital cameras. Chapter, digital camera image storage formats, 1st edn. CRC press, Boca Raton, pp 351–379

    Google Scholar 

  74. Patti AJ, Sezan MJ, Tekalp AM (1997) Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans Image Process 6(8):1064–1076

    Article  Google Scholar 

  75. Pennebaker WB (1993) Mitchell JL (1993) JPEG still image data compression standard. Van Nostrand Reinhold, New York

    Google Scholar 

  76. Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. In: Proceedings of the ACM SIGGRAPH, vol 23. pp 664–672

    Google Scholar 

  77. Pillman B, Deever A, Kumar M (2010) Flexible readout image capture with a four-channel CFA. In: Proceedings of the ICIP, pp 561–564

    Google Scholar 

  78. Poplin D (2006) An automatic flicker detection method for embedded camera systems. IEEE Trans Consum Electron 52(2):308–311

    Article  Google Scholar 

  79. Raskar R, Agrawal A, Tumblin J (2006) Coded exposure photography: motion deblurring using fluttered shutter. ACM Trans Graph 25:795–804

    Article  Google Scholar 

  80. Rav-Acha A, Peleg S (2005) Two motion-blurred images are better than one. Pattern Recognit Lett 26(3):311–317

    Article  Google Scholar 

  81. Reference output medium metric RGB color space (ROMM RGB) white paper (1999) Technical report version 2.2, accession number 324122H, Eastman Kodak Company

    Google Scholar 

  82. Roddy J, Zolla R, Blish N, Horvath L (2006) Four color image sensing apparatus. U.S. Patent 7057654

    Google Scholar 

  83. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27:1–10

    Google Scholar 

  84. Smith WJ (1966) Modern optical engineering. McGraw-Hill, San Francisco

    Google Scholar 

  85. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE international conference on computer vision. IEEE

    Google Scholar 

  86. Triantafyllidis GA, Tzovaras D, Strintzis MG (2002) Blocking artifact detection and reduction in compressed data. IEEE Trans Circuits Syst Video Technol 12(10):877–890

    Article  Google Scholar 

  87. Trussell H, Hartwig R (2002) Mathematics for demosaicking. IEEE Trans Image Process 11(4):485–492

    Article  MathSciNet  Google Scholar 

  88. Yamagami T, Sasaki T, Suga A (1994) Image signal processing apparatus having a color filter with offset luminance filter elements. U.S. Patent 5323233

    Google Scholar 

  89. Yamanaka S (1997) Solid state camera. U.S. Patent 4054906

    Google Scholar 

  90. Yoshida H (2004) Image pickup apparatus and method of correcting deteriorated pixel signal thereof. U.S. Patent 6809763

    Google Scholar 

  91. Yu W (2003) An embedded camera lens distortion correction method for mobile computing applications. IEEE Trans Consum Electron 49(4):894–901. doi:10.1109/TCE.2003.1261171

    Article  Google Scholar 

  92. Yuan L, Sun J, Quan L, Shum HY (2007) Image deblurring with blurred/noisy image pairs. ACM Trans Graph 26:1–10

    Article  MATH  Google Scholar 

  93. Zhang F, Wu X, Yang X, Zhang W, Zhang L (2009) Robust color demosaicking with adaptation to varying spectral correlations. IEEE Trans Image Process 18(12):2706–2717

    Article  MathSciNet  Google Scholar 

  94. Zhang L, Wu X (2005) Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans Image Process 14(12):2167–2178

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge many helpful discussions with James E. Adams, Jr., in the development and review of this chapter. Ken Parulski also provided a great deal of assistance for the discussion of file formats.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Deever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deever, A., Kumar, M., Pillman, B. (2013). Digital Camera Image Formation: Processing and Storage. In: Sencar, H., Memon, N. (eds) Digital Image Forensics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0757-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0757-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0756-0

  • Online ISBN: 978-1-4614-0757-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics