Skip to main content

Conservation of Residual Renal Function in Children Reaching End-Stage Renal Disease

  • Chapter
  • First Online:
  • 1875 Accesses

Abstract

Chronic kidney disease (CKD) progresses at variable rate toward end-stage renal disease (ESRD) (Fig. 9.1) [1], and residual renal function (RRF) continues to decrease gradually after initiation of dialysis which is usually initiated when RRF has underpassed 5–10 mL/min/1.73 m² of glomerular filtration rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22(7):1014–20.

    Article  PubMed  Google Scholar 

  2. Wang AY, Lai KN. The importance of residual renal function in dialysis patients. Kidney Int. 2006;69(10): 1726–32.

    Article  PubMed  Google Scholar 

  3. Marron B, Remon C, Perez-Fontan M, Quiros P, Ortiz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int Suppl. 2008;108: S42–51.

    Article  PubMed  Google Scholar 

  4. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int. 2002;61(1):256–65.

    Article  PubMed  CAS  Google Scholar 

  5. Churchill DN, Taylor DW, Keshaviah PR, for the CANUSA Peritoneal Dialysis Study Group. Ade­quacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

    Google Scholar 

  6. Rocco MV, Frankenfield DL, Prowant B, Frederick P, Flanigan MJ. Risk factors for early mortality in U.S. peritoneal dialysis patients: impact of residual renal function. Perit Dial Int. 2002;22(3):371–9.

    PubMed  Google Scholar 

  7. Davies SJ, Phillips L, Russell GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant. 1998;13(4):962–8.

    Article  PubMed  CAS  Google Scholar 

  8. Diaz-Buxo JA, Lowrie EG, Lew NL, Zhang SM, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis. 1999;33(3):523–34.

    Article  PubMed  CAS  Google Scholar 

  9. Rocco M, Soucie JM, Pastan S, McClellan WM. Peritoneal dialysis adequacy and risk of death. Kidney Int. 2000;58(1):446–57.

    Article  PubMed  CAS  Google Scholar 

  10. Szeto CC, Wong TY, Leung CB, et al. Importance of dialysis adequacy in mortality and morbidity of chinese CAPD patients. Kidney Int. 2000;58(1):400–7.

    Article  PubMed  CAS  Google Scholar 

  11. Shemin D, Bostom AG, Lambert C, Hill C, Kitsen J, Kliger AS. Residual renal function in a large cohort of peritoneal dialysis patients: change over time, impact on mortality and nutrition. Perit Dial Int. 2000;20(4): 439–44.

    PubMed  CAS  Google Scholar 

  12. Termorshuizen F, Korevaar JC, Dekker FW, van Manen JG, Boeschoten EW, Krediet RT. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis. 2003;41(6):1293–302.

    Article  PubMed  Google Scholar 

  13. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10): 2158–62.

    PubMed  CAS  Google Scholar 

  14. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol. 2004;15(4):1061–70.

    Article  PubMed  Google Scholar 

  15. Szeto CC, Wong TY, Chow KM, Leung CB, Li PK. Are peritoneal dialysis patients with and without residual renal function equivalent for survival study? Insight from a retrospective review of the cause of death. Nephrol Dial Transplant. 2003;18(5):977–82.

    Article  PubMed  Google Scholar 

  16. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant. 2001;16(11):2207–13.

    Article  PubMed  CAS  Google Scholar 

  17. Wang AY, Lam CW, Wang M, Chan IH, Lui SF, Sanderson JE. Is valvular calcification a part of the missing link between residual kidney function and cardiac hypertrophy in peritoneal dialysis patients? Clin J Am Soc Nephrol. 2009;4(10):1629–36.

    Article  PubMed  Google Scholar 

  18. Acar B, Yalcinkaya F, Cakar N, et al. The outcome for pediatric patients on peritoneal dialysis. J Nephrol. 2008;21(3):394–9.

    PubMed  Google Scholar 

  19. Bakkaloglu SA, Saygili A, Sever L, et al. Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPEPD) report. Nephrol Dial Transplant. 2009;24(11):3525–32.

    Article  PubMed  Google Scholar 

  20. Page DE, Knoll GA, Cheung V. The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Adv Perit Dial. 2002;18:189–91.

    PubMed  CAS  Google Scholar 

  21. Wang AY, Woo J, Wang M, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transplant. 2005;20(2):396–403.

    Article  PubMed  Google Scholar 

  22. Dixit MP, Cabansag MR, Piscitelli J, Greifer I, Silverstein DM. Serum beta2-microglobulin and immunoglobulin levels in young hemodialysis patients. Pediatr Nephrol. 1999;13(2):139–42.

    Article  PubMed  CAS  Google Scholar 

  23. Montini G, Amici G, Milan S, et al. Middle molecule and small protein removal in children on peritoneal dialysis. Kidney Int. 2002;61(3):1153–9.

    Article  PubMed  CAS  Google Scholar 

  24. Chadha V, Blowey DL, Warady BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Perit Dial Int. 2001; 21(Suppl 3):S179–84.

    PubMed  Google Scholar 

  25. Guzzo I, Mancini E, Wafo SK, Rava L, Picca S. Residual renal function and nutrition in young patients on chronic hemodialysis. Pediatr Nephrol. 2009;24(7):1391–7.

    Article  PubMed  Google Scholar 

  26. Erkan E, Moritz M, Kaskel F. Impact of residual renal function in children on hemodialysis. Pediatr Nephrol. 2001;16(11):858–61.

    Article  PubMed  CAS  Google Scholar 

  27. Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52.

    PubMed  CAS  Google Scholar 

  28. Tkaczyk M, Nowicki M, Balasz-Chmielewska I, et al. Hypertension in dialysed children: the prevalence and therapeutic approach in Poland – a nationwide survey. Nephrol Dial Transplant. 2006;21(3): 736–42.

    Article  PubMed  Google Scholar 

  29. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2002;62(3):1046–53.

    Article  PubMed  Google Scholar 

  30. Hidaka H, Nakao T. Preservation of residual renal function and factors affecting its decline in patients on peritoneal dialysis. Nephrology (Carlton). 2003; 8(4):184–91.

    Article  Google Scholar 

  31. Mitsnefes M, Ho PL, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol. 2003;14(10):2618–22.

    Article  PubMed  Google Scholar 

  32. Litwin M. Risk factors for renal failure in children with non-glomerular nephropathies. Pediatr Nephrol. 2004;19(2):178–86.

    Article  PubMed  Google Scholar 

  33. Neild GH. What do we know about chronic renal failure in young adults? II. Adult outcome of pediatric renal disease. Pediatr Nephrol. 2009;24(10):1921–8.

    Article  PubMed  Google Scholar 

  34. Wingen AM, Fabian-Bach C, Schaefer F, Mehls O. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. II. Adult outcome of pediatric renal disease. Lancet. 1997;349(9059):1117–23.

    Article  PubMed  CAS  Google Scholar 

  35. Wong CS, Pierce CB, Cole SR, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–19.

    Article  PubMed  CAS  Google Scholar 

  36. Wuhl E, Trivelli A, Picca S, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.

    Article  PubMed  Google Scholar 

  37. Wuehl E, Mehls O, Schaefer F. ESCAPE Trial Group: long-term dissociation of antiproteinuric and antihypertensive efficacy of ACE inhibition in children with chronic renal failure.COD.OC 16 [Abstract]. Pediatr Nephrol. 2006;21:1505.

    Google Scholar 

  38. Singhal MK, Bhaskaran S, Vidgen E, Bargman JM, Vas SI, Oreopoulos DG. Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit Dial Int. 2000; 20(4):429–38.

    PubMed  CAS  Google Scholar 

  39. Soares CM, Diniz JS, Lima EM, et al. Clinical outcome of children with chronic kidney disease in a pre-dialysis interdisciplinary program. Pediatr Nephrol. 2008;23(11):2039–46.

    Article  PubMed  Google Scholar 

  40. Bernardo A, Fonseca I, Rodrigues A, Carvalho MJ, Cabrita A. Predictors of residual renal function loss in peritoneal dialysis: is previous renal transplantation a risk factor? Adv Perit Dial. 2009;25:110–14.

    PubMed  Google Scholar 

  41. Caravaca F, Dominguez C, Arrobas M. Predictors of loss of residual renal function in peritoneal dialysis patients. Perit Dial Int. 2002;22(3):414–17.

    PubMed  Google Scholar 

  42. Soares CM, Diniz JS, Lima EM, et al. Predictive factors of progression to chronic kidney disease stage 5 in a predialysis interdisciplinary programme. Nephrol Dial Transplant. 2009;24(3):848–55.

    Article  PubMed  Google Scholar 

  43. Feber J, Scharer K, Schaefer F, Mikova M, Janda J. Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatr Nephrol. 1994;8(5):579–83.

    Article  PubMed  CAS  Google Scholar 

  44. Van Biesen W, Dequidt C, Vanholder R, Lameire N. The impact of healthy start peritoneal dialysis on the evolution of residual renal function and nutrition parameters. Adv Perit Dial. 2002;18:44–8.

    PubMed  Google Scholar 

  45. Liao CT, Shiao CC, Huang JW, et al. Predictors of faster decline of residual renal function in Taiwanese peritoneal dialysis patients. Perit Dial Int. 2008;28 (Suppl 3):S191–5.

    PubMed  CAS  Google Scholar 

  46. Shin SK, Noh H, Kang SW, et al. Risk factors influencing the decline of residual renal function in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1999;19(2):138–42.

    PubMed  CAS  Google Scholar 

  47. de Fijter CW, ter Wee PM, Donker AJ. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 2000;15(7):1094–6.

    Article  PubMed  Google Scholar 

  48. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45(6):978–93.

    Article  PubMed  CAS  Google Scholar 

  49. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    Article  PubMed  CAS  Google Scholar 

  50. Furth SL, Cole SR, Fadrowski JJ, et al. The association of anemia and hypoalbuminemia with accelerated decline in GFR among adolescents with chronic kidney disease. Pediatr Nephrol. 2007;22(2): 265–71.

    Article  PubMed  Google Scholar 

  51. Gouva C, Nikolopoulos P, Ioannidis JP, Siamopoulos KC. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int. 2004;66(2):753–60.

    Article  PubMed  Google Scholar 

  52. Wang AY, Wang M, Woo J, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int. 2002;62(2):639–47.

    Article  PubMed  Google Scholar 

  53. Chalmers L, Kaskel FJ, Bamgbola O. The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis. 2006;13(4):352–64.

    Article  PubMed  Google Scholar 

  54. Han KH, Lee SH, Lee HK, et al. Risk factors for the progression of pediatric chronic kidney disease - a single center study. J Korean Soc Pediatr Nephrol. 2007;11(2):239–46.

    Article  Google Scholar 

  55. Moist LM, Port FK, Orzol SM, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol. 2000;11(3):556–64.

    PubMed  CAS  Google Scholar 

  56. Noordzij M, Voormolen NM, Boeschoten EW, et al. Disordered mineral metabolism is not a risk factor for loss of residual renal function in dialysis patients. Nephrol Dial Transplant. 2009;24(5):1580–7.

    Article  PubMed  CAS  Google Scholar 

  57. Johnson DW, Mudge DW, Sturtevant JM, et al. Predictors of decline of residual renal function in new peritoneal dialysis patients. Perit Dial Int. 2003;23(3):276–83.

    PubMed  Google Scholar 

  58. Papp F, Friedman AL, Bereczki C, et al. Renin-angiotensin gene polymorphism in children with uremia and essential hypertension. Pediatr Nephrol. 2003;18(2):150–4.

    PubMed  Google Scholar 

  59. Hohenfellner K, Wingen AM, Nauroth O, Wuhl E, Mehls O, Schaefer F. Impact of ACE I/D gene polymorphism on congenital renal malformations. Pediatr Nephrol. 2001;16(4):356–61.

    Article  PubMed  CAS  Google Scholar 

  60. Oktem F, Sirin A, Bilge I, Emre S, Agachan B, Ispir T. ACE I/D gene polymorphism in primary FSGS and steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2004;19(4):384–9.

    Article  PubMed  Google Scholar 

  61. Amoroso A, Danek G, Vatta S, et al. Polymorphisms in angiotensin-converting enzyme gene and severity of renal disease in Henoch-Schoenlein patients. Italian Group of Renal Immunopathology. Nephrol Dial Transplant. 1998;13(12):3184–8.

    Article  PubMed  CAS  Google Scholar 

  62. Lee-Chen GJ, Liu KP, Lai YC, Juang HS, Huang SY, Lin CY. Significance of the tissue kallikrein promoter and transforming growth factor-beta1 polymorphisms with renal progression in children with vesicoureteral reflux. Kidney Int. 2004;65(4): 1467–72.

    Article  PubMed  CAS  Google Scholar 

  63. Ardissino G, Testa S, Dacco V, et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr Nephrol. 2004;19(2):172–7.

    Article  PubMed  Google Scholar 

  64. Lane PH. Puberty and chronic kidney disease. Adv Chronic Kidney Dis. 2005;12(4):372–7.

    Article  PubMed  Google Scholar 

  65. Tonshoff B, Fine RN. Recombinant human growth hormone for children with renal failure. Adv Ren Replace Ther. 1996;3(1):37–47.

    PubMed  CAS  Google Scholar 

  66. Liao CT, Chen YM, Shiao CC, et al. Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol Dial Transplant. 2009;24(9):2909–14.

    Article  PubMed  Google Scholar 

  67. Drechsler C, de Mutsert R, Grootendorst DC, et al. Association of body mass index with decline in residual kidney function after initiation of dialysis. Am J Kidney Dis. 2009;53(6):1014–23.

    Article  PubMed  Google Scholar 

  68. Lang SM, Bergner A, Topfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int. 2001;21(1):52–7.

    PubMed  CAS  Google Scholar 

  69. Misra M, Vonesh E, Van Stone JC, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int. 2001;59(2):754–63.

    Article  PubMed  CAS  Google Scholar 

  70. Lysaght MJ, Vonesh EF, Gotch F, et al. The influence of dialysis treatment modality on the decline of remaining renal function. ASAIO Trans. 1991;37(4): 598–604.

    PubMed  CAS  Google Scholar 

  71. Hiroshige K, Yuu K, Soejima M, Takasugi M, Kuroiwa A. Rapid decline of residual renal function in patients on automated peritoneal dialysis. Perit Dial Int. 1996;16(3):307–15.

    PubMed  CAS  Google Scholar 

  72. Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 1999;14(5):1224–8.

    Article  PubMed  CAS  Google Scholar 

  73. Roszkowska-Blaim M, Skrzypczyk P, Drozdz D, Pietrzyk JA. Residual renal function in children treated with continuous ambulatory peritoneal dialysis or automated peritoneal dialysis–a preliminary study. Adv Perit Dial. 2009;25:103–9.

    PubMed  Google Scholar 

  74. Holley JL, Aslam N, Bernardini J, Fried L, Piraino B. The influence of demographic factors and modality on loss of residual renal function in incident peritoneal dialysis patients. Perit Dial Int. 2001;21(3): 302–5.

    PubMed  CAS  Google Scholar 

  75. Dell’Aquila R, Berlingo G, Pellanda MV, Contestabile A. Continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: are there differences in outcome? Contrib Nephrol. 2009;163:292–9.

    Article  PubMed  Google Scholar 

  76. Fischbach M, Terzic J, Menouer S, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial. 2001;17: 269–73.

    PubMed  CAS  Google Scholar 

  77. Ng TG, Johnson DW, Hawley CM. Is it time to revisit residual renal function in haemodialysis? Nephrology (Carlton). 2007;12(3):209–17.

    Article  Google Scholar 

  78. Chandna SM, Farrington K. Residual renal function: considerations on its importance and preservation in dialysis patients. Semin Dial. 2004;17(3):196–201.

    Article  PubMed  Google Scholar 

  79. Adachi Y, Nishio A, Ikegami T. Tidal automated peritoneal dialysis preserves residual renal function better than non tidal automated peritoneal dialysis. Adv Perit Dial. 2007;23:98–101.

    PubMed  Google Scholar 

  80. Baker RJ, Senior H, Clemenger M, Brown EA. Empirical aminoglycosides for peritonitis do not affect residual renal function. Am J Kidney Dis. 2003;41(3):670–5.

    Article  PubMed  CAS  Google Scholar 

  81. Shemin D, Maaz D, St Pierre D, Kahn SI, Chazan JA. Effect of aminoglycoside use on residual renal function in peritoneal dialysis patients. Am J Kidney Dis. 1999;34(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  82. Wuhl E, Mehls O, Schaefer F. Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int. 2004;66(2):768–76.

    Article  PubMed  Google Scholar 

  83. Ardissino G, Vigano S, Testa S, et al. No clear evidence of ACEi efficacy on the progression of chronic kidney disease in children with hypodysplastic nephropathy–report from the ItalKid Project database. Nephrol Dial Transplant. 2007;22(9):2525–30.

    Article  PubMed  Google Scholar 

  84. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis. 2004;43(6):1056–64.

    Article  PubMed  CAS  Google Scholar 

  85. Li PK, Chow KM, Wong TY, Leung CB, Szeto CC. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann Intern Med. 2003;139(2):105–12.

    PubMed  CAS  Google Scholar 

  86. Litwin M, Grenda R, Sladowska J, Antoniewicz J. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21(11):1716–22.

    Article  PubMed  Google Scholar 

  87. Frimodt-Moller M, Hoj Nielsen A, Strandgaard S, Kamper AL. Feasibility of combined treatment with enalapril and candesartan in advanced chronic kidney disease. Nephrol Dial Transplant. 2010;25(3):842–7.

    Article  PubMed  CAS  Google Scholar 

  88. Bianchi S, Bigazzi R, Campese VM. Intensive versus conventional therapy to slow the progression of idiopathic glomerular diseases. Am J Kidney Dis. 2010;55(4):671–81.

    Article  PubMed  CAS  Google Scholar 

  89. Medcalf JF, Harris KP, Walls J. Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 2001;59(3):1128–33.

    Article  PubMed  CAS  Google Scholar 

  90. Bragg-Gresham JL, Fissell RB, Mason NA, et al. Diuretic use, residual renal function, and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Pattern Study (DOPPS). Am J Kidney Dis. 2007;49(3):426–31.

    Article  PubMed  Google Scholar 

  91. Haag-Weber M, Kramer R, Haake R, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol Dial Transplant. 2010;25(7): 2288–96.

    Article  PubMed  CAS  Google Scholar 

  92. Szeto CC, Chow KM, Lam CW, et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products – a 1-year randomized control trial. Nephrol Dial Transplant. 2007;22(2):552–9.

    Article  PubMed  CAS  Google Scholar 

  93. Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 2004;66(1):408–18.

    Article  PubMed  Google Scholar 

  94. Fan SL, Pile T, Punzalan S, Raftery MJ, Yaqoob MM. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 2008;73(2):200–6.

    Article  PubMed  CAS  Google Scholar 

  95. Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol. 2003;14(9):2338–44.

    Article  PubMed  CAS  Google Scholar 

  96. Adachi Y, Nakagawa Y, Nishio A. Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int. 2006; 26(3):405–7.

    PubMed  CAS  Google Scholar 

  97. McCarthy JT, Jenson BM, Squillace DP, Williams AW. Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers. Am J Kidney Dis. 1997;29(4): 576–83.

    Article  PubMed  CAS  Google Scholar 

  98. Hartmann J, Fricke H, Schiffl H. Biocompatible membranes preserve residual renal function in patients undergoing regular hemodialysis. Am J Kidney Dis. 1997;30(3):366–73.

    Article  PubMed  CAS  Google Scholar 

  99. Schindler R, Boenisch O, Fischer C, Frei U. Effect of the hemodialysis membrane on the inflammatory reaction in vivo. Clin Nephrol. 2000;53(6):452–9.

    PubMed  CAS  Google Scholar 

  100. Hakim RM, Wingard RL, Husni L, Parker RA, Parker III TF. The effect of membrane biocompatibility on plasma beta 2-microglobulin levels in chronic hemodialysis patients. J Am Soc Nephrol. 1996;7(3):472–8.

    PubMed  CAS  Google Scholar 

  101. Schiffl H, Lang SM, Fischer R. Ultrapure dialysis fluid slows loss of residual renal function in new dialysis patients. Nephrol Dial Transplant. 2002; 17(10):1814–18.

    Article  PubMed  CAS  Google Scholar 

  102. Trachtman H, Christen E, Frank R, et al. Pilot study of mycophenolate mofetil for treatment of kidney disease due to congenital urinary tract disorders in children. Am J Kidney Dis. 2008;52(4):706–15.

    Article  PubMed  CAS  Google Scholar 

  103. Iida S, Kohno K, Yoshimura J, et al. Carbonic-adsorbent AST-120 reduces overload of indoxyl sulfate and the plasma level of TGF-beta1 in patients with chronic renal failure. Clin Exp Nephrol. 2006;10(4):262–7.

    Article  PubMed  CAS  Google Scholar 

  104. Perkins RM, Aboudara MC, Uy AL, Olson SW, Cushner HM, Yuan CM. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2009;53(4):606–16.

    Article  PubMed  CAS  Google Scholar 

  105. Pergola PE, Raskin P, Toto R, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365:327–36.

    Article  PubMed  CAS  Google Scholar 

  106. Bahlmann FH, Kielstein JT, Haller H, Fliser D. Erythropoietin and progression of CKD. Kidney Int Suppl. 2007;107:S21–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Soo Ha MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ha, IS., Schaefer, F. (2012). Conservation of Residual Renal Function in Children Reaching End-Stage Renal Disease. In: Warady, B., Schaefer, F., Alexander, S. (eds) Pediatric Dialysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0721-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0721-8_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0720-1

  • Online ISBN: 978-1-4614-0721-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics