Skip to main content

Curve Complexes Versus Tits Buildings: Structures and Applications

  • Conference paper
  • First Online:
  • 902 Accesses

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 10))

Abstract

Tits buildings\({\Delta }_{\mathbb{Q}}(\mathbf{G})\)of linear algebraic groupsGdefined over the field of rational numbers\(\mathbb{Q}\) have played an important role in understanding partial compactifications of symmetric spaces and compactifications of locally symmetric spaces, cohomological properties of arithmetic subgroups and S-arithmetic subgroups of \(\mathbf{G}(\mathbb{Q})\). Curve complexes \(\mathcal{C}({S}_{g,n})\) of surfaces S g,n were introduced to parametrize boundary components of partial compactifications of Teichmüller spaces and were later applied to understand properties of mapping class groups of surfaces and geometry and topology of 3-dimensional manifolds. Tits buildings are spherical buildings, and another important class of buildings consists of Euclidean buildings, for example, the Bruhat–Tits buildings of linear algebraic groups defined over local fields. In this paper, we summarize and compare some properties and applications of buildings and curve complexes. We try to emphasize their similarities but also point out differences. In some sense, curve complexes are combinations of spherical, Euclidean and hyperbolic buildings. We hope that such a comparison might motivate more questions and also suggest methods to solve them at the same time, and furthermore it might introduce buildings to people who study curve complexes and curve complexes to people who study buildings.

2000 Mathematics Subject Classification: 53C35, 30F60, 22E40, 20G15, 57M99

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Abramenko, Twin buildings and applications to S-arithmetic groups, Lecture Notes in Mathematics, 1641. Springer, Berlin, 1996. x + 123 pp

    Google Scholar 

  2. P. Abramenko, K. Brown, Buildings, Theory and applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008. xxii+747 pp

    Google Scholar 

  3. W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (1985), no. 3, 597–609

    Google Scholar 

  4. W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, 61. Birkhäuser Boston, Inc., Boston, MA, 1985. vi + 263 pp

    Google Scholar 

  5. J. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523–1578

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Behrstock, B. Kleiner, Y. Minsky, L. Mosher, Geometry and rigidity of mapping class groups, arXiv:0801.2006

    Google Scholar 

  7. J. Behrstock, Y. Minsky, Dimension and rank for mapping class groups, Ann. of Math. (2) 167 (2008), no. 3, 1055–1077

    Google Scholar 

  8. G. Bell, K. Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 33–50

    Google Scholar 

  9. R. Bell, D. Margalit, Injections of Artin groups, Comment. Math. Helv. 82 (2007), no. 4, 725–751

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, Universitext. Springer, Berlin, 1992. xiv+330 pp

    Google Scholar 

  11. S. Benvenuti, Finite presentations for the mapping class group via the ordered complex of curves, Adv. Geom. 1 (2001), no. 3, 291–321

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Bers, The moduli of Kleinian groups. Russian Math. Surveys 29 (1974), no. 2, 88–102

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Besson, G. Courtois, S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), no. 5, 731–799

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bestvina, K. Bromberg, K. Fujiwara, The asymptotic dimension of mapping class groups is finite, arXiv:1006.1939

    Google Scholar 

  15. M. Bestvina, K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69–89

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Birman, A. Lubotzky, J. McCarthy, Abelian and solvable subgroups of the mapping class groups.Duke Math. J. 50 (1983), no. 4, 1107–1120

    Google Scholar 

  17. M. Boggi, P. Lochak Profinite complexes of curves, their automorphisms and anabelian properties of moduli stacks of curves, arXiv:0706.0859

    Google Scholar 

  18. F. Bonahon, Bouts des variétés hyperboliques de dimension 3. Ann. of Math. (2) 124 (1986), no. 1, 71–158

    Google Scholar 

  19. A. Borel, L. Ji, Compactifications of symmetric and locally symmetric spaces, Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 2006. xvi+479 pp

    Google Scholar 

  20. A. Borel, J. P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Borel, J. P. Serre, Cohomologie d’immeubles et de groupes S-arithmétiques, Topology 15 (1976), no. 3, 211–232

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bourdon, Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 343–364

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281–300

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Bowditch, Length bounds on curves arising from tight geodesics, Geom. Funct. Anal. 17 (2007), no. 4, 1001–1042

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Bowditch, Geometric models for hyperbolic 3-manifolds, preprint

    Google Scholar 

  28. B. Bowditch, End invariants of hyperbolic 3-manifolds, preprint

    Google Scholar 

  29. M. Bridson, Geodesics and curvature in metric simplicial complexes, in Group theory from a geometrical viewpoint, 373–463, World Sci. Publ., River Edge, NJ, 1991

    Google Scholar 

  30. M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin, 1999. xxii+643 pp

    Google Scholar 

  31. N. Broaddus, Homology of the curve complex and the Steinberg module of the mapping class group, arXiv:0711.0011

    Google Scholar 

  32. J. Brock, B. Farb, Curvature and rank of Teichmüller space. Amer. J. Math. 128 (2006), no. 1, 1–22

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), no. 3, 495–535

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Brock, R. Canary, Y. Minsky, The classification of Kleinian surface groups, II: The Ending Lamination Conjecture, arXiv:math/0412006v1

    Google Scholar 

  35. J. Brock, H. Masur, Y. Minsky, Asymptotics of Weil-Petersson geodesic. I. Ending laminations, recurrence, and flows. Geom. Funct. Anal. 19 (2010), no. 5, 1229–1257

    Google Scholar 

  36. K. Brown, Cohomology of groups, Corrected reprint of the 1982 original. Graduate Texts in Mathematics, 87. Springer, New York, 1994. x+306 pp

    Google Scholar 

  37. M. Bucher-Karlsson, Simplicial volume of locally symmetric spaces covered by \(\mathrm{{SL}}_{3}\mathbb{R}/\mathrm{SO}(3)\). Geom. Dedicata 125 (2007), 203–224

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Burns, R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 35–59

    Google Scholar 

  39. K. Burns, R. Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 5–34

    Google Scholar 

  40. P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106. Birkhäuser Boston, Inc., Boston, MA, 1992. xiv+454 pp

    Google Scholar 

  41. D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1993), no. 1, 1–35

    MathSciNet  MATH  Google Scholar 

  42. D. Canary, Marden’s tameness conjecture: history and applications, in Geometry, analysis and topology of discrete groups, 137–162, Adv. Lect. Math. (ALM), 6, Int. Press, Somerville, MA, 2008

    Google Scholar 

  43. R. Canary, D. McCullough, Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups, Mem. Amer. Math. Soc. 172 (2004), no. 812, xii+218 pp

    Google Scholar 

  44. R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xii+544 pp

    Google Scholar 

  45. M. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, 32. Princeton University Press, Princeton, NJ, 2008. xvi+584 pp

    Google Scholar 

  46. M. Davis, Examples of buildings constructed via covering spaces, Groups Geom. Dyn. 3 (2009), no. 2, 279–298

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces. J. Amer. Math. Soc. 11 (1998), no. 2, 321–361

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Eskin, B. Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997), no. 3, 653–692

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Essert, Buildings, group homology and lattices, arXiv:1008.4908

    Google Scholar 

  50. B. Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997), no. 5, 705–717

    MathSciNet  MATH  Google Scholar 

  51. B. Farb, N. Ivanov, The Torelli geometry and its applications: research announcement, Math. Res. Lett. 12 (2005), no. 2-3, 293–301

    MathSciNet  MATH  Google Scholar 

  52. B. Farb, C. Leininger, D. Margalit, The lower central series and pseudo-Anosov dilatations. Amer. J. Math. 130 (2008), no. 3, 799–827

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Farb, H. Masur, Teichmüller geometry of moduli space. II. \(\mathcal{M}(S)\) seen from far away, In the tradition of Ahlfors-Bers, V, 71–79, Contemp. Math., 510, Amer. Math. Soc., Providence, RI, 2010

    Google Scholar 

  54. B. Farb, R. Schwartz, The large-scale geometry of Hilbert modular groups. J. Differential Geom. 44 (1996), no. 3, 435–478

    MathSciNet  MATH  Google Scholar 

  55. D. Gaboriau, F. Paulin, Sur les immeubles hyperboliques, Geom. Dedicata 88 (2001), no. 1-3, 153–197

    Article  MathSciNet  MATH  Google Scholar 

  56. V. Gadre, C. Tsai, Minimal pseudo-Anosov translation lengths on the complex of curves, arXiv:1101.2692

    Google Scholar 

  57. P. Gérardin, Harmonic functions on buildings of reductive split groups. in Operator algebras and group representations, Vol. I (Neptun, 1980), 208–221, Monogr. Stud. Math., 17, Pitman, Boston, MA, 1984

    Google Scholar 

  58. M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. No. 56 (1982), 5–99 (1983)

    Google Scholar 

  59. M. Gromov, P. Pansu, Rigidity of lattices: an introduction, in Geometric topology: recent developments (Montecatini Terme, 1990), 39–137, Lecture Notes in Math., 1504, Springer, Berlin, 1991

    Google Scholar 

  60. Y. Guivarc’h, L. Ji, J. C. Taylor, Compactifications of symmetric spaces, Progress in Mathematics, 156. Birkhäuser Boston, Inc., Boston, MA, 1998. xiv+284 pp

    Google Scholar 

  61. Y. Guivarc’h, B. Rémy, Group-theoretic compactification of Bruhat-Tits buildings, Ann. Sci. École Norm. Sup. 39 (2006), 871–920

    Google Scholar 

  62. U. Hamenstädt, Geometry of the mapping class groups. I. Boundary amenability, Invent. Math. 175 (2009), no. 3, 545–609

    Google Scholar 

  63. U. Hamenstädt, Geometry of the complex of curves and of Teichmüller space, in Handbook of Teichmüller theory, Vol. I, 447–467, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007

    Google Scholar 

  64. U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in Spaces of Kleinian groups, 187–207, London Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006

    Google Scholar 

  65. U. Hamenstädt, Geometry of the mapping class groups III: Quasi-isometric rigidity, arXiv:math/0512429v2

    Google Scholar 

  66. J. Harer, The cohomology of the moduli space of curves, in Theory of moduli (Montecatini Terme, 1985), pp. 138–221, Lecture Notes in Math., 1337, Springer, Berlin, 1988

    Google Scholar 

  67. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176

    Article  MathSciNet  MATH  Google Scholar 

  68. K. Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002), no. 1, 61–75

    Article  MathSciNet  MATH  Google Scholar 

  69. W. Harvey, Geometric structure of surface mapping class groups, in Homological group theory (Proc. Sympos., Durham, 1977), pp. 255–269, London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge-New York, 1979

    Google Scholar 

  70. W. Harvey, Boundary structure of the modular group, in Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 245–251, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981

    Google Scholar 

  71. W. Harvey, Remarks on the curve complex: classification of surface homeomorphisms, in Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), 165–179, London Math. Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, 2003

    Google Scholar 

  72. W. Harvey, Modular groups–geometry and physics. in Discrete groups and geometry (Birmingham, 1991), 94–103, London Math. Soc. Lecture Note Ser., 173, Cambridge Univ. Press, Cambridge, 1992

    Google Scholar 

  73. W. Harvey, Modular groups and representation spaces. in Geometry of group representations (Boulder, CO, 1987), 205–214, Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988

    Google Scholar 

  74. A. Hatcher, W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221–237

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Hatcher, K. Vogtmann, The complex of free factors of a free group. Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 196, 459–468

    Google Scholar 

  76. T. Hattori, Asymptotic geometry of arithmetic quotients of symmetric spaces, Math. Z. 222 (1996), 247–277

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631–657

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Hirose, A complex of curves and a presentation for the mapping class group of a surface, Osaka J. Math. 39 (2002), no. 4, 795–820

    MathSciNet  MATH  Google Scholar 

  79. E. Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups, Topology 43 (2004), no. 3, 513–541

    Article  MathSciNet  MATH  Google Scholar 

  80. N. Ivanov, Mapping class groups, in Handbook of geometric topology, pp. 523–633, North-Holland, Amsterdam, 2002

    Google Scholar 

  81. N. Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices 1997, no. 14, 651–666

    Google Scholar 

  82. N. Ivanov, Isometries of Teichmüller spaces from the point of view of Mostow rigidity, in Topology, ergodic theory, real algebraic geometry, 131–149, Amer. Math. Soc. Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001

    Google Scholar 

  83. N. Ivanov, Attaching corners to Teichmüller space, Leningrad Math. J. 1 (1990), no. 5, 1177–1205

    MathSciNet  Google Scholar 

  84. N. Ivanov, Action of Möbius transformations on homeomorphisms: stability and rigidity, Geom. Funct. Anal. 6 (1996), no. 1, 79–119

    Article  MathSciNet  MATH  Google Scholar 

  85. N. Ivanov, Subgroups of Teichmüller modular groups. Translations of Mathematical Monographs, 115. American Mathematical Society, Providence, RI, 1992. xii+127 pp

    Google Scholar 

  86. N. Ivanov, L. Ji, Infinite topology of curve complexes and non-Poincaré duality of Teichmüller modular groups, Enseign. Math. (2) 54 (2008), no. 3-4, 381–395

    Google Scholar 

  87. L. Ji, Buildings and their applications in geometry and topology, Asian J. Math. 10 (2006), no. 1, 11–80

    MathSciNet  MATH  Google Scholar 

  88. L. Ji, From symmetric spaces to buildings, curve complexes and outer spaces, Innov. Incidence Geom. 10 (2009), 33–80

    MathSciNet  Google Scholar 

  89. L. Ji, Integral Novikov conjectures and arithmetic groups containing torsion elements, Comm. Anal. Geom. 15 (2007), no. 3, 509–533

    MathSciNet  MATH  Google Scholar 

  90. L. Ji, Arithmetic groups, mapping class groups, related groups, and their associated spaces, in Proceedings of the Fourth International Congress of Mathematicians, AMS/IP Stud. Adv. Math., vol. 48, pp. 127-175, Amer. Math. Soc., Providence, RI, 2010

    Google Scholar 

  91. L. Ji, Simplicial volume of moduli spaces of Riemann surfaces, preprint 2011

    Google Scholar 

  92. L. Ji, Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups. in Third International Congress of Chinese Mathematicians. Part 1, 2, 317–344, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence, RI, 2008

    Google Scholar 

  93. L. Ji, The integral Novikov conjectures for S-arithmetic groups. I. K-Theory 38 (2007), no. 1, 35–47

    Google Scholar 

  94. L. Ji, R. MacPherson, Geometry of compactifications of locally symmetric spaces, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 2, 457–559

    Google Scholar 

  95. L. Ji, S. Wolpert, A cofinite universal space for proper actions for mapping class groups, In the tradition of Ahlfors-Bers. V, 151–163, Contemp. Math., 510, Amer. Math. Soc., Providence, RI, 2010

    Google Scholar 

  96. J. Johnson, Heegaard splittings and the pants complex, Algebr. Geom. Topol. 6 (2006), 853–874

    Article  MathSciNet  MATH  Google Scholar 

  97. J. Johnson, Bridge Number and the Curve Complex, arXiv:math/0603102

    Google Scholar 

  98. I. Kapovich, N. Benakli, Boundaries of hyperbolic groups. in Combinatorial and geometric group theory, 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI

    Google Scholar 

  99. I. Kapovich, M. Lustig, Geometric intersection number and analogues of the curve complex for free groups. Geom. Topol. 13 (2009), no. 3, 1805–1833

    Article  MathSciNet  MATH  Google Scholar 

  100. Y. Kida, The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc. 196 (2008), no. 916, viii+190 pp

    Google Scholar 

  101. Y. Kida, Automorphisms of the Torelli complex and the complex of separating curves, arXiv:0909.4718

    Google Scholar 

  102. Y. Kim, The Thurston boundary of Teichmüller space and complex of curves, Topology Appl. 154 (2007), no. 3, 675–682

    Article  MathSciNet  MATH  Google Scholar 

  103. E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint, http://www.msri.org/people/members/klarreic/curvecomplex.ps

  104. B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 115–197

    Google Scholar 

  105. M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95 (1999), no. 2, 85–111

    Article  MathSciNet  MATH  Google Scholar 

  106. M. Korkmaz, A. Papadopoulos, On the arc and curve complex of a surface, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 473–483

    Article  MathSciNet  MATH  Google Scholar 

  107. J. Lafont, B. Schmidt, Simplicial volume of closed locally symmetric spaces of non-compact type, Acta Math. 197 (2006), no. 1, 129–143

    Article  MathSciNet  MATH  Google Scholar 

  108. E. Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Math. 1619, Springer, 1996, viii+152 pp

    Google Scholar 

  109. B. Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften, 326. Universität Bonn, Mathematisches Institut, Bonn, 2000. ii+42 pp

    Google Scholar 

  110. E. Leuzinger, Tits geometry, arithmetic groups, and the proof of a conjecture of Siegel, J. Lie Theory 14 (2004), no. 2, 317–338

    MathSciNet  MATH  Google Scholar 

  111. E. Leuzinger, Reduction theory for mapping class groups and applications to moduli spaces, arXiv:0801.1589

    Google Scholar 

  112. T. Li, Saddle tangencies and the distance of Heegaard splittings, Algebr. Geom. Topol. 7 (2007), 1119–1134

    Article  MathSciNet  MATH  Google Scholar 

  113. C. Löh, R. Sauer, Simplicial volume of Hilbert modular varieties, Comment. Math. Helv. 84 (2009), no. 3, 457–470

    Article  MathSciNet  MATH  Google Scholar 

  114. C. Löh, R. Sauer, Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume, J. Topol. 2 (2009), no. 1, 193–225

    Article  MathSciNet  MATH  Google Scholar 

  115. E. Looijenga, Connectivity of complexes of separating curves, arXiv:1001.0823

    Google Scholar 

  116. W. Lück, Survey on classifying spaces for families of subgroups, in Infinite groups: geometric, combinatorial and dynamical aspects, 269–322, Progr. Math., 248, Birkhäuser, Basel, 2005

    Google Scholar 

  117. F. Luo, Automorphisms of the complex of curves, Topology 39 (2000), no. 2, 283–298

    Article  MathSciNet  MATH  Google Scholar 

  118. J. Maher, Linear progress in the complex of curves, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2963–2991

    Article  MathSciNet  MATH  Google Scholar 

  119. A. Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462

    Google Scholar 

  120. A. Marden, Deformations of Kleinian groups, in Handbook of Teichmüller theory. Vol. I, 411–446, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007

    Google Scholar 

  121. A. Marden, Outer circles. An introduction to hyperbolic 3-manifolds, Cambridge University Press, Cambridge, 2007. xviii+427 pp

    Google Scholar 

  122. D. Margalit, Automorphisms of the pants complex, Duke Math. J. 121 (2004), no. 3, 457–479

    Article  MathSciNet  MATH  Google Scholar 

  123. G. Margulis, Non-uniform lattices in semisimple algebraic groups, in Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai János Math. Soc., Budapest, 1971), pp. 371–553. Halsted, New York, 1975

    Google Scholar 

  124. G. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17. Springer, Berlin, 1991. x+388 pp

    Google Scholar 

  125. H. Masur, Y. Minsky, Quasiconvexity in the curve complex, In the tradition of Ahlfors and Bers, III, pp. 309–320, Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004

    Google Scholar 

  126. H. Masur, Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974

    Google Scholar 

  127. H. Masur, Y. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149

    Google Scholar 

  128. H. Masur, M. Wolf, The Weil-Petersson isometry group, Geom. Dedicata 93 (2002), 177–190

    Article  MathSciNet  MATH  Google Scholar 

  129. J. D. McCarthy, A. Papadopoulos, Simplicial actions of mapping class groups, Handbook of Teichmüller theory, vol III, IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich, 2011

    Google Scholar 

  130. Y. Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107

    Google Scholar 

  131. Y. Minsky, Curve complexes, surfaces and 3-manifolds, in International Congress of Mathematicians. Vol. II, pp. 1001–1033, Eur. Math. Soc., Zürich, 2006

    Google Scholar 

  132. Y. Minsky, End invariants and the classification of hyperbolic 3-manifolds, on Current developments in mathematics, 2002, 181–217, Int. Press, Somerville, MA, 2003

    Google Scholar 

  133. Y. Minsky, Combinatorial and geometrical aspects of hyperbolic 3-manifolds, in Kleinian groups and hyperbolic 3-manifolds, 3–40, London Math. Soc. Lecture Note Ser., 299, Cambridge Univ. Press, Cambridge, 2003

    Google Scholar 

  134. Y. Minsky, Curve complexes, surfaces and 3-manifolds, in International Congress of Mathematicians, Vol. II, 1001–1033, Eur. Math. Soc., Zürich, 2006

    Google Scholar 

  135. M. Mj, Cannon-Thurston maps for pared manifolds of bounded geometry. Geom. Topol. 13 (2009), no. 1, 189–245

    Article  MathSciNet  MATH  Google Scholar 

  136. M. Mj, Mapping class groups and interpolating complexes: rank. J. Ramanujan Math. Soc. 24 (2009), no. 4, 341–357

    MathSciNet  MATH  Google Scholar 

  137. M. Moore, M. Rathbun, High distance knots in closed 3-manifolds, arXiv:0911.3675

    Google Scholar 

  138. G. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. v+195 pp

    Google Scholar 

  139. A. Moy, Displacement functions on the Bruhat-Tits building, In The mathematical legacy of Harish-Chandra, 483–499, Proc. Sympos. Pure Math., 68, Amer. Math. Soc., Providence, RI, 2000

    Google Scholar 

  140. P. Nowak, G. Yu, What is property A?, Notices Amer. Math. Soc. 55 (2008), no. 4, 474–475

    MathSciNet  MATH  Google Scholar 

  141. L. Paris, Actions and irreducible representations of the mapping class group, Math. Ann. 322 (2002), no. 2, 301–315

    Article  MathSciNet  MATH  Google Scholar 

  142. D. Patterson, The Teichml̈ler spaces are distinct, Proc. Amer. Math. Soc. 35 (1972), 179–182

    MathSciNet  MATH  Google Scholar 

  143. R. Penner, J. Harer, Combinatorics of train tracks. Annals of Mathematics Studies, 125. Princeton University Press, Princeton, NJ, 1992. xii+216 pp

    Google Scholar 

  144. G. Prasad, Strong rigidity of \(\mathbb{Q}\)-rank 1 lattices, Invent. Math. 21 (1973), 255–286

    Article  MathSciNet  MATH  Google Scholar 

  145. A. Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math. (2) 54 (2008), no. 3-4, 287–301

    Google Scholar 

  146. K. Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007), no. 3, 936–959

    Article  MathSciNet  MATH  Google Scholar 

  147. K. Rafi, S. Schleimer, Covers and the curve complex, Geom. Topol. 13 (2009), no. 4, 2141–2162

    Article  MathSciNet  MATH  Google Scholar 

  148. K. Rafi, S. Schleimer, Curve complexes are rigid, arXiv:0710.3794

    Google Scholar 

  149. J. Ratcliffe, Foundations of hyperbolic manifolds, Second edition. Graduate Texts in Mathematics, 149. Springer, New York, 2006. xii+779 pp

    Google Scholar 

  150. B. Rémy, A. Thuillier, A. Werner, Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings. Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 3, 461–554

    Google Scholar 

  151. B. Rémy, A. Thuillier, A. Werner, Bruhat-Tits theory from Berkovich’s point of view. II. Satake compactifications, arXiv:0907.3264

    Google Scholar 

  152. M. Ronan, From Galois and Lie to Tits buildings,, in The Coxeter legacy, 45–62, Amer. Math. Soc., Providence, RI, 2006

    Google Scholar 

  153. M. Ronan, J. Tits, Building buildings, Math. Ann. 278 (1987), no. 1-4, 291–306

    Article  MathSciNet  MATH  Google Scholar 

  154. H.L. Royden, Automorphisms and isometries of Teichmüller space, in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), pp. 369–383, Ann. of Math. Studies, No. 66., Princeton Univ. Press

    Google Scholar 

  155. T. Saito, Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004), no. 2, 427–454

    MathSciNet  MATH  Google Scholar 

  156. T. Saito, R. Yamamoto, Complexity of open book decompositions via arc complex, J. Knot Theory Ramifications 19 (2010), no. 1, 55–69

    Article  MathSciNet  MATH  Google Scholar 

  157. M. Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. 228 (2006), no. 2, 325–348

    Article  MathSciNet  MATH  Google Scholar 

  158. M. Scharlemann, M. Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006), 593–617

    Article  MathSciNet  MATH  Google Scholar 

  159. P. Scott, C. T. Wall, Topological methods in group theory. in Homological group theory (Proc. Sympos., Durham, 1977), pp. 137–203, London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge-New York, 1979

    Google Scholar 

  160. R. Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math., 82 (1995), 133–168

    Article  MATH  Google Scholar 

  161. R. Schwartz, Quasi-isometric rigidity and Diophantine approximation. Acta Math. 177 (1996), no. 1, 75–112

    Article  MathSciNet  MATH  Google Scholar 

  162. K. Shackleton, Combinatorial rigidity in curve complexes and mapping class groups, Pacific J. Math. 230 (2007), no. 1, 217–232

    Article  MathSciNet  MATH  Google Scholar 

  163. B. Szepietowski, A presentation for the mapping class group of a non-orientable surface from the action on the complex of curves, Osaka J. Math. 45 (2008), no. 2, 283–326

    MathSciNet  MATH  Google Scholar 

  164. W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431

    Google Scholar 

  165. P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. 97 (1989), no. 2, 405–431

    Article  MathSciNet  MATH  Google Scholar 

  166. J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386. Springer, Berlin-New York, 1974. x+299 pp

    Google Scholar 

  167. J. Tits, On buildings and their applications, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pp. 209–220. Canad. Math. Congress, Montreal, Que., 1975

    Google Scholar 

  168. M. Tomova, Distance of Heegaard splittings of knot complements, Pacific J. Math. 236 (2008), no. 1, 119–138

    Article  MathSciNet  MATH  Google Scholar 

  169. B. Wajnryb, A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45 (1983), no. 2-3, 157–174

    Article  MathSciNet  MATH  Google Scholar 

  170. A. Werner, Non-Archimedean intersection indices on projective spaces and the Bruhat-Tits building for PGL, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 6, 1483–1505

    Google Scholar 

  171. A. Werner, Compactifications of Bruhat-Tits buildings associated to linear representations. Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 497–518

    Google Scholar 

  172. A. Werner, Compactification of the Bruhat–Tits building of PGL by lattices of smaller rank, Doc. Math. 6 (2001) 315–341

    MathSciNet  MATH  Google Scholar 

  173. A. Werner, Compactification of the Bruhat–Tits building of PGL by seminorms, Math. Z. 248 (2004) 511–526

    Article  MathSciNet  MATH  Google Scholar 

  174. S. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space, in Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 357–393, Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ji, L. (2012). Curve Complexes Versus Tits Buildings: Structures and Applications. In: Sastry, N. (eds) Buildings, Finite Geometries and Groups. Springer Proceedings in Mathematics, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0709-6_6

Download citation

Publish with us

Policies and ethics