Skip to main content

Functional Mechanics of the Human Hip

  • Chapter
  • First Online:

Abstract

The application of scientific principles to the study of the hip has provided insight into morphologic and biomechanical factors compromising hip function, including acquired abnormalities (e.g., posttraumatic deformities, Perthes disease, slipped capital femoral epiphysis), developmental pathologies (e.g., developmental dysplasia of the hip [DDH]), and abnormalities of unknown origin (e.g., cam deformity of the femoral head-neck junction and pincer deformities of the acetabular margin).

However, the response of biologic tissues to repetitive overload is a function of both bony morphology and external loading and thus the nature and frequency of patients’ activities. Thus the stresses developed within the tissues are a function of the external forces acting on the body, the muscle forces required to generate joint motion, and the area of contact between the articulating surfaces of the femur and the acetabulum. These basic principles may provide insight into the pathomechanics of common hip conditions.

For example, developmental dysplasia is characterized by reduced coverage of the femoral head by a shallow, inclined acetabulum. The reduced area of the weight-bearing surface leads to high contact stresses and overloading of the labrum and hip capsule, leading to joint degeneration. On the other hand, femoroacetabular impingement is seen in hips with normal (cam) or excessive (pincer) coverage. In these joints, pathologic changes occur when joint motion is driven beyond the limit imposed by impingement between the femur and the acetabular margin, often with degeneration of the labro-chondral junction leading to delamination of the articular surface. And at the opposite extreme, the unstable hip is typically encountered in patients with hyperlaxity leading to excessive joint motion due to loss of the normal capsular restraints that work in concert with the bony structures of the joint to prevent subluxation.

In this chapter we present a biomechanical perspective to each of these pathologic conditions after first discussing the essentials of the joint forces, motions, and tissues that form the basis of normal hip function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Callaghan J, Rosenberg A, Rubash H. The adult hip. In: Hurwitz D, Andriacchi T, editors. Biomechanics of the hip, vol. 1. Philadelphia: Lippincott-Raven; 1998. p. 11.

    Google Scholar 

  2. Perry J, editor. Gait analysis: normal and pathological function. Thorofare: Slack; 1992.

    Google Scholar 

  3. Hack K, Di Primio G, Rakhra K, Beaulé PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92(14):2436–44.

    Article  PubMed  Google Scholar 

  4. Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40(12):2720–4.

    Article  PubMed  Google Scholar 

  5. Allen D, Beaulé PE, Ramadan O, Doucette S. Prevalence of associated deformities and hip pain in patients with cam-type femoroacetabular impingement. J Bone Joint Surg Br. 2009;91(5):589–94.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson MG, Michet Jr CJ, Ilstrup DM, Melton Iii LJ. Idiopathic symptomatic osteoarthritis of the hip and knee: a population-based incidence study. Mayo Clin Proc. 1990;65(9):1214–21.

    Article  CAS  PubMed  Google Scholar 

  7. Seldes RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald Jr RH. Anatomy, histologic features, and vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;382:232–40.

    Article  Google Scholar 

  8. Baber YF, Robinson AHN, Villar RN. Is diagnostic arthroscopy of the hip worthwhile? A prospective review of 328 adults investigated for hip pain. J Bone Joint Surg Br. 1999;81(4):600–3.

    Article  CAS  PubMed  Google Scholar 

  9. Cotten A, Boutry N, Demondion X, Paret C, Dewatre F, Liesse A, Chastanet P, Fontaine C. Acetabular labrum: MRI in asymptomatic volunteers. J Comput Assist Tomogr. 1998;22(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Rydell NW. Forces acting on the femoral head-prosthesis: a study on strain gauge supplied prostheses in living persons. Acta Orthop. 1966;37(S88):1–132.

    Article  Google Scholar 

  11. Bergmann G, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.

    Article  CAS  PubMed  Google Scholar 

  12. Bergmann G, Graichen F, Rohlmann A. Is staircase walking a risk for the fixation of hip implants? J Biomech. 1995;28(5):535–53.

    Article  CAS  PubMed  Google Scholar 

  13. Bergmann G, Graichen F, Rohlmann A. Hip joint contact forces during stumbling. Langenbecks Arch Surg. 2004;389(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bergmann G, et al. Realistic loads for testing hip implants. Biomed Mater Eng. 2010;20(2):65–75.

    CAS  PubMed  Google Scholar 

  15. Tackson SJ, Krebs DE, Harris BA. Acetabular pressures during hip arthritis exercises. Arthritis Care Res. 1997;10(5):308–19.

    Article  CAS  PubMed  Google Scholar 

  16. Foucher KC, Hurwitz DE, Wimmer MA. Do gait adaptations during stair climbing result in changes in implant forces in subjects with total hip replacements compared to normal subjects? Clin Biomech (Bristol, Avon). 2008;23(6):754–61.

    Article  Google Scholar 

  17. Stansfield BW, Nicol AC. Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. Clin Biomech (Bristol, Avon). 2002;17:130–9.

    Article  CAS  Google Scholar 

  18. Duda GN, Schneider E, Chao EY. Internal forces and moments in the femur during walking. J Biomech. 1997;30:933–41.

    Article  CAS  PubMed  Google Scholar 

  19. Genda E, Iwasaki N, Li G, MacWilliams BA, Barrance PJ, Chao E. Normal hip joint contact pressure distribution in single-leg standing—effect of gender and anatomic parameters. J Biomech. 2001;34(7):895–905.

    Article  CAS  PubMed  Google Scholar 

  20. Lenaerts G, Bartels W, Gelaude F, Mulier M, Spaepen A, Van der Perre G, Jonkers I. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. J Biomech. 2009;42(9):1246–51.

    Article  CAS  PubMed  Google Scholar 

  21. Recnik G, Kralj-Iglič V, Iglič A, Antolič V, Kramberger S, Rigler I, Pompe B, Vengust R. The role of obesity, biomechanical constitution of the pelvis and contact joint stress in progression of hip osteoarthritis. Osteoarthritis Cartilage. 2009;17(7):879–82.

    Article  CAS  PubMed  Google Scholar 

  22. Bergmann G, Kniggendorf H, Graichen F, Rohlmann A. Influence of shoes and heel strike on the loading of the hip joint. J Biomech. 1995;28(7):817–27.

    Article  CAS  PubMed  Google Scholar 

  23. Hardin EC, van den Bogert AJ, Hamill J. Kinematic adaptations during running: effects of footwear, surface, and duration. Med Sci Sports Exerc. 2004;36(5):838–44.

    Article  PubMed  Google Scholar 

  24. Gu D, Hu F, Wei J, Dai K, Chen Y. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress. In: Annual international conference of the IEEE, Boston; 2011. p. 8166–9.

    Google Scholar 

  25. Afoke N, Byers P, Hutton W. The incongruous hip joint—a casting study. J Bone Joint Surg Br. 1980;62B(4):511–4.

    Google Scholar 

  26. Greenwald A, Haynes D. Weight-bearing areas in the human hip joint. J Bone Joint Surg Br. 1972;54B(1):157–63.

    Google Scholar 

  27. Yoshida H, Faust A, Wilkcens J, Kitagawa M, Fetto J, Chao EYS. Three-dimensional dynamics hip contact area and pressure distribution during activities of daily living. J Biomech. 2006;39:1996–2004.

    Article  CAS  PubMed  Google Scholar 

  28. Menschik F. The hip joint as a conchoid shape. J Biomech. 1997;30(9):971–3.

    Article  CAS  PubMed  Google Scholar 

  29. Magee D. Orthopedic physical assessment. 4th ed. Pennsylvania: Saunders; 2002.

    Google Scholar 

  30. Fagerson TL, editor. The hip handbook. Woburn: Butterworth-Heinemann; 1998.

    Google Scholar 

  31. Frankel VH, Nordin M, editors. Basic biomechanics of the skeletal system, vol. 15. Philadelphia: Lea & Febiger; 1980. p. 303.

    Google Scholar 

  32. Reese N, Bandy W, editors. Joint range of motion and muscle length testing. Philadelphia: W.B. Saunders; 2002.

    Google Scholar 

  33. Pua YH, et al. Intrarater test-retest reliability of hip range of motion and hip muscle strength measurements in persons with hip osteoarthritis. Arch Phys Med Rehabil. 2008;89(6):1146–54.

    Article  PubMed  Google Scholar 

  34. Roach K, Miles T. Normal hip and knee active range of motion: the relationship to age. Phys Ther. 1991;71:656–65.

    Article  CAS  PubMed  Google Scholar 

  35. Moreside JM, McGill SM. Quantifying normal 3D hip ROM in healthy young adult males with clinical and laboratory tools: hip mobility restrictions appear to be plane-specific. Clin Biomech (Bristol, Avon). 2011;26(8):824–9.

    Article  Google Scholar 

  36. Hemmerich A, et al. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J Orthop Res. 2006;24:770–81.

    Article  CAS  PubMed  Google Scholar 

  37. Ahlberg A, Moussa M, Al-Nahdi M. On geographical variations in the normal range of joint motion. Clin Orthop Relat Res. 1988;(234):229–31.

    Google Scholar 

  38. Hoaglund FT, Yau AC, Wong WL. Osteoarthritis of the hip and other joints in southern Chinese in Hong Kong. J Bone Joint Surg Am. 1973;55:545–57.

    Article  CAS  PubMed  Google Scholar 

  39. Mulholland SJ, Wyss UP. Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants. Int J Rehabil Res. 2001;24:191–8.

    Article  CAS  PubMed  Google Scholar 

  40. Turley G, Williams M, Wellings R, Griffin D. Evaluation of range of motion restriction within the hip joint. Med Biol Eng Comput. 2013;51(4):467–77.

    Article  PubMed  Google Scholar 

  41. Smith M, Costic R, Allaire R, Schilling P, Sekiya J. A biomechanical analysis of the soft tissue and osseous constraints of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):946–52.

    Article  PubMed  Google Scholar 

  42. Shindle MK, Ranawat A, Kelly B. Diagnosis and management of traumatic and atraumatic instability in the athletic patient. Clin Sports Med. 2006;25:309–26.

    Article  PubMed  Google Scholar 

  43. Kelly B, Williams RJ, Philippon M. Hip arthroscopy: current indications, treatment options, and management issues. Am J Sports Med. 2003;31(6):1020–37.

    PubMed  Google Scholar 

  44. Konrath GA, Hamel AJ, Olson SA, Bay B, Sharkey NA. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. J Bone Joint Surg Am. 1998;80-A(12):1781–8.

    Article  Google Scholar 

  45. Bharam S. Labral tears, extra-articular injuries, and hip arthroscopy in the athlete. Clin Sports Med. 2006;25:279–92.

    Article  PubMed  Google Scholar 

  46. Hewitt JD, et al. The mechanical properties of the human hip capsule ligaments. J Arthroplasty. 2002;17(1):82–9.

    Article  PubMed  Google Scholar 

  47. Stewart KJ, et al. Spatial distribution of hip capsule structural and material properties. J Biomech. 2002;35(11):1491–8.

    Article  PubMed  Google Scholar 

  48. Martin HD, Savage A, Braly B, Palmer I, Beall DP, Kelly BT. The function of the hip capsular ligaments: a quantitative report. Arthroscopy. 2008;24(2):188–95.

    Article  PubMed  Google Scholar 

  49. Wagner F, Negrao J, Campos J, et al. Capsular ligaments of the hip: anatomic, histologic, and positional study in cadaveric specimens with MR arthrography. Radiology. 2012;263(1):189–98.

    Article  PubMed  Google Scholar 

  50. Myers CA, Register BC, Lertwanich P, et al. Role of the acetabular labrum and the iliofemoral ligament in hip stability: an in vitro biplane fluoroscopy study. Am J Sports Med. 2011;39:85S–91.

    Article  PubMed  Google Scholar 

  51. Domb B, Philipon M, Giordano B. Arthroscopic capsulotomy, capsular repair, and capsular plication of the hip: relation to atraumatic instability. Arthroscopy. 2013;29(1):162–73.

    Article  PubMed  Google Scholar 

  52. Offierski CM. Traumatic dislocation of the hip in children. J Bone Joint Surg Br. 1981;63-B(2):194–7.

    CAS  PubMed  Google Scholar 

  53. Ito K, et al. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  54. Malagelada F, Tayar R, Barke S, Stafford G, Field RE. Anatomy of the zona orbicularis of the hip: a magnetic resonance study. Surg Radiol Anat. 2015;37(1):11–8.

    Article  PubMed  Google Scholar 

  55. Ferguson SJ, Bryant JT, Ito K. The material properties of the bovine acetabular labrum. J Orthop Res. 2001;19(5):887–96.

    Article  CAS  PubMed  Google Scholar 

  56. Ishiko T, Naito M, Moriyama S. Tensile properties of the human acetabular labrum-the first report. J Orthop Res. 2005;23(6):1448–53.

    Article  PubMed  Google Scholar 

  57. Smith CD, et al. A biomechanical basis for tears of the human acetabular labrum. Br J Sports Med. 2009;43(8):574–8.

    Article  CAS  PubMed  Google Scholar 

  58. Konrath GA, et al. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. J Bone Joint Surg Am. 1998;80(12):1781–8.

    Article  CAS  PubMed  Google Scholar 

  59. Lohe F, Eckstein F, Sauer T, Putz R. Structure, strain and function of the transverse acetabular ligament. Acta Anat. 1996;157:315–23.

    Article  CAS  PubMed  Google Scholar 

  60. Beaule PE, O’Neill M, Rakhra K. Acetabular labral tears. J Bone Joint Surg Am. 2009;91(3):701–10.

    Article  PubMed  Google Scholar 

  61. Crawford MJ, Dy CJ, Alexander JW, et al. The biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res. 2007;465:16–22.

    PubMed  Google Scholar 

  62. Ferguson SJ, Bryant JT, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech. 2000;33(8):953–60.

    Article  CAS  PubMed  Google Scholar 

  63. Eijer HL. Cross-table lateral radiographs for screening of anterior femoral head-neck offset in patients with femoro-acetabular impingement. Hip Int. 2001;11:37–41.

    Google Scholar 

  64. Ferguson SJ, Bryant JT, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. 2003;36(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  65. Takechi H, Nagashima H, Ito S. Intra-articular pressure of the hip joint outside and inside the limbus. Nippon Seikeigeka Gakkai Zasshi. 1982;56(6):529–36.

    CAS  PubMed  Google Scholar 

  66. Ferguson SJ, et al. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech (Bristol, Avon). 2000;15(6):463–8.

    Article  CAS  Google Scholar 

  67. McCarthy JC, et al. The watershed labral lesion: its relationship to early arthritis of the hip. J Arthroplasty. 2001;16(8 Suppl 1):81–7.

    Article  CAS  PubMed  Google Scholar 

  68. Cashin M, et al. Embryology of the acetabular labral-chondral complex. J Bone Joint Surg Br. 2008;90(8):1019–24.

    Article  CAS  PubMed  Google Scholar 

  69. McCarthy JC, et al. The Otto E. Aufranc Award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res. 2001;393:25–37.

    Article  Google Scholar 

  70. Groh MM, Herrera J. A comprehensive review of hip labral tears. Curr Rev Musculoskelet Med. 2009;2(2):105–17.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br. 2005;87(7):1012–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ikeda T, Awaya G, Suzuki S, Okada Y, Tada H. Torn acetabular labrum in young patients. Arthroscopic diagnosis and management. J Bone Joint Surg Br. 1988;70(1):13–6.

    CAS  PubMed  Google Scholar 

  73. Wenger DE, Kendell KR, Miner MR, Trousdale RT. Acetabular labral tears rarely occur in the absence of bony abnormalities. Clin Orthop Relat Res. 2004;426:145–50.

    Article  Google Scholar 

  74. Tanzer M, Noiseux N. Osseous abnormalities and early osteoarthritis: the role of hip impingement. Clin Orthop Relat Res. 2004;429:170–7.

    Article  Google Scholar 

  75. Dolan MM, Heyworth BE, Bedi A, Duke G, Kelly BT. CT reveals a high incidence of osseous abnormalities in hips with labral tears. Clin Orthop Relat Res. 2011;469(3):831–8.

    Article  PubMed  Google Scholar 

  76. Dy CJ, et al. Tensile strain in the anterior part of the acetabular labrum during provocative maneuvering of the normal hip. J Bone Joint Surg Am. 2008;90(7):1464–72.

    Article  PubMed  Google Scholar 

  77. Domb BG, Shindle MK, McArthur B, Voos JE, Magennis EM, Kelly BT. Iliopsoas impingement: a newly identified cause of labral pathology in the hip. HSS J. 2012;7:145–50.

    Article  Google Scholar 

  78. Blankenbaker DG, Tuite MJ, Keene JS, Del Rio AM. Labral injuries due to iliopsoas impingement: can they be diagnosed on MR arthrography? AJR Am J Roentgenol. 2012;199:894–900.

    Article  PubMed  Google Scholar 

  79. Cascio BM, King D, Yen YM. Psoas impingement causing labrum tear: a series from three tertiary hip arthroscopy centers. J La State Med Soc. 2013;165:88–93.

    PubMed  Google Scholar 

  80. Bardakos NV, Villar RN. The ligamentum teres of the adult hip. J Bone Joint Surg Br. 2009;91(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  81. Martin RL, Palmer I, Martin HD. Ligamentum teres: a functional description and potential clinical relevance. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1209–14.

    Article  PubMed  Google Scholar 

  82. Wenger D, Miyanji F, Mahar A, Oka R. The mechanical properties of the ligamentum teres: a pilot study to assess its potential for improving stability in children’s hip surgery. J Pediatr Orthop. 2007;27(4):408–10.

    Article  PubMed  Google Scholar 

  83. Kivlan BR, Clemente FR, Martin RL, Martin HD. Function of the ligamentum teres during multi-planar movement of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1664–8.

    Article  PubMed  Google Scholar 

  84. Martin RL, Kivlan BR, Clemente FR. A cadaveric model for ligamentum teres function: a pilot study. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1689–93.

    Article  PubMed  Google Scholar 

  85. Domb BG, Martin DE, Botser IB. Risk factors for ligamentum teres tears. Arthroscopy. 2013;29:64–73.

    Article  PubMed  Google Scholar 

  86. Simpson JM, Field RE, Villar RN. Arthroscopic reconstruction of the ligamentum teres. Arthroscopy. 2011;27(3):436–41.

    Article  PubMed  Google Scholar 

  87. Haviv B, O’Donnell J. Arthroscopic debridement of the isolated ligamentum teres rupture. Knee Surg Sports Traumatol Arthrosc. 2011;19:1510–3.

    Article  PubMed  Google Scholar 

  88. Amenabar T, O’Donnell J. Successful treatment of isolated, partial thickness ligamentum teres (LT) tears with debridement and capsulorrhaphy. Hip Int. 2013.

    Google Scholar 

  89. Bowman Jr KF, Fox J, Sekiya JK. A clinically relevant review of hip biomechanics. Arthroscopy. 2010;26(8):1118–29.

    Article  PubMed  Google Scholar 

  90. Leunig M, Casillas MM, Hamlet M, Hersche O, Nötzli H, Slongo T, Ganz R. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop. 2000;71(4):370–5.

    Article  CAS  Google Scholar 

  91. Stulberg SD, Cordell LD, Harris WH, Ramsey PL, MacEwen GD. Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: The hip: Proceedings of the third open scientific meeting of the Hip Society. St Louis: CV Mosby; 1975. p. 212–28.

    Google Scholar 

  92. Leunig M, et al. Acetabular rim degeneration: a constant finding in the aged hip. Clin Orthop Relat Res. 2003;413:201–7.

    Article  Google Scholar 

  93. Tannast M, et al. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res. 2008;466(2):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ganz R, et al. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466(2):264–72.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ganz R, et al. Femoroacetabular impingement (FAI): a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    Google Scholar 

  96. Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in Femoroacetabular impingement (FAI): a radiological study with a minimum of ten years follow-up. J Bone Joint Surg Br. 2009;91(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  97. Parvizi J, Leunig M, Ganz R. Femoroacetabular impingement. J Am Acad Orthop Surg. 2007;15(9):561–70.

    Article  PubMed  Google Scholar 

  98. Kubiak-Langer M, Tannast M, Murphy SB, Siebenrock KA, Langlotz F. Range of motion in anterior femoroacetabular impingement. Clin Orthop Relat Res. 2007;458:117–24.

    CAS  PubMed  Google Scholar 

  99. Chegini S, Beck M, Ferguson SJ. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. J Orthop Res. 2009;27(2):195–201.

    Article  PubMed  Google Scholar 

  100. Johnston TL, Schenker ML, Briggs KK, Philippon MJ. Relationship between offset angle alpha and hip chondral injury in femoroacetabular impingement. Arthroscopy. 2008;24(6):669–75.

    Article  PubMed  Google Scholar 

  101. Brandt KD, Dieppe P, Radin EL. Etiopathogenesis of osteoarthritis. Rheum Dis Clin North Am. 2008;34(3):531–59.

    Article  PubMed  Google Scholar 

  102. Russell ME, et al. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J Orthop Surg Res. 2006;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Noguchi Y, et al. Cartilage and labrum degeneration in the dysplastic hip generally originates in the anterosuperior weight-bearing area: an arthroscopic observation. Arthroscopy. 1999;15(5):496–506.

    Article  CAS  PubMed  Google Scholar 

  104. Tsumura H, Miura H, Iwamoto Y. Three-dimensional pressure distribution of the human hip joint—comparison between normal hips and dysplastic hips. Fukuoka Igaku Zasshi. 1998;89(4):109–18.

    CAS  PubMed  Google Scholar 

  105. Hadley NA, Brown TD, Weinstein SL. The effects of contact pressure elevations and aseptic necrosis on the long‐term outcome of congenital hip dislocation. J Orthop Res. 1990;8(4):504–13.

    Article  CAS  PubMed  Google Scholar 

  106. Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008;130(5):051008.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Henak CR, Ellis BJ, Harris MD, Anderson AE, Peters CL, Weiss JA. Role of the acetabular labrum in load support across the hip joint. J Biomech. 2011;44(12):2201–6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Anderson AE, Ellis BJ, Maas SA, Weiss JA. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech. 2010;43(7):1351–7.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Klaue K, Durnin CW, Ganz R. The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg Br. 1991;73(3):423–9.

    CAS  PubMed  Google Scholar 

  110. Haene RA, Bradley M, Villar RN. Hip dysplasia and the torn acetabular labrum: an inexact relationship. J Bone Joint Surg Br. 2007;89(10):1289–92.

    Article  CAS  PubMed  Google Scholar 

  111. Kawabe K, Konishi N. Three-dimensional modeling of cartilage thickness in hip dysplasia. Clin Orthop Relat Res. 1993;289:180–5.

    Google Scholar 

  112. Clohisy JC, Barrett SE, Gordon JE, Delgado ED, Schoenecker PL. Periacetabular osteotomy for the treatment of severe acetabular dysplasia. J Bone Joint Surg Am. 2005;87(2):254–9.

    Article  PubMed  Google Scholar 

  113. Millis MB, Kim YJ. Rationale of osteotomy and related procedures for hip preservation: a review. Clin Orthop Relat Res. 2002;405:108–21.

    Article  Google Scholar 

  114. Beighton P, Horan F. Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg Br. 1969;51(3):444–53.

    CAS  PubMed  Google Scholar 

  115. Grahame R, Bird HA, Child A. The revised (Brighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). J Rheumatol. 2000;27(7):1777–9.

    CAS  PubMed  Google Scholar 

  116. Nawabi DH, Bedi A, Tibor LM, Magennis E, Kelly BT. The demographic characteristics of high-level and recreational athletes undergoing hip arthroscopy for Femoroacetabular impingement (FAI): a sports-specific analysis. Arthroscopy. 2014;30:398–405.

    Article  PubMed  Google Scholar 

  117. Duthon VB, Charbonnier C, Kolo FC, Magnenat-Thalmann N, Becker CD, Bouvet C, Coppens E, Hoffmeyer P, Menetrey J. Correlation of clinical and magnetic resonance imaging findings in hips of elite female ballet dancers. Arthroscopy. 2013;29(3):411–9.

    Article  PubMed  Google Scholar 

  118. Charbonnier C, Kolo FC, Duthon VB, et al. Assessment of congruence and impingement of the hip joint in professional ballet dancers: a motion capture study. Am J Sports Med. 2011;39:557–66.

    Article  PubMed  Google Scholar 

  119. Harris J, Slikker W, Gupta A, Abrams G, Nho S. Routine complete capsular closure during hip arthroscopy. Arthrosc Tech. 2013;2:e89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  120. McCormick F, Slikker III W, Harris JD, et al. Evidence of capsular defect following hip arthroscopy. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):902–5.

    Article  PubMed  Google Scholar 

  121. Ranawat AS, McClincy M, Sekiya JK. Anterior dislocation of the hip after arthroscopy in a patient with capsular laxity of the hip. A case report. J Bone Joint Surg Am. 2009;91(1):192–7.

    Article  PubMed  Google Scholar 

  122. Benali Y, Katthagen BD. Hip subluxation as a complication of arthroscopic debridement. Arthroscopy. 2009;25(4):405–7.

    Article  PubMed  Google Scholar 

  123. Ilizaliturri Jr VM. Complications of arthroscopic femoroacetabular impingement treatment: a review. Clin Orthop Relat Res. 2009;467(3):760–8.

    Article  PubMed  Google Scholar 

  124. Matsuda DK. Acute iatrogenic dislocation following hip impingement arthroscopic surgery. Arthroscopy. 2009;25(4):400–4.

    Article  PubMed  Google Scholar 

  125. Mei-Dan O, McConkey MO, Brick M. Catastrophic failure of hip arthroscopy due to iatrogenic instability: can partial division of the ligamentum teres and iliofemoral ligament cause subluxation? Arthroscopy. 2012;28(3):440–5.

    Article  PubMed  Google Scholar 

  126. Sansone M, Ahlden M, Jonasson P, Sward L, Eriksson T, Karlsson J. Total dislocation of the hip joint after arthroscopy and ileopsoas tenotomy. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):420–3.

    Article  PubMed  Google Scholar 

  127. Souza BG, Dani WS, Honda EK, Ricioli Jr W, Guimaraes RP, Ono NK, et al. Do complications in hip arthroscopy change with experience? Arthroscopy. 2010;26(8):1053–7.

    Article  PubMed  Google Scholar 

  128. Bayne CO, Stanley R, Simon P, Espinoza-Orias A, Salata MJ, Bush-Joseph CA, Nho SJ. Effect of capsulotomy on hip stability-a consideration during hip arthroscopy. Am J Orthop (Belle Mead NJ). 2014;43(4):160–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Noble PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Noble, P.C., Dwyer, M.K., Gobba, M.S., Harris, J.D. (2017). Functional Mechanics of the Human Hip. In: McCarthy, J., Noble, P., Villar, R. (eds) Hip Joint Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0694-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0694-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0693-8

  • Online ISBN: 978-1-4614-0694-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics